Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
In modern photovoltaic systems, there is an ever-increasing need to improve the system efficiency, to detect internal faults and to guarantee service continuity. The only way to meet these objectives is to utilize and create synergies between diagnostic techniques and control algorithms. Diagnostic methods can be implemented through module-dedicated electronics, by running on real-time embedded systems or by using a huge database on the cloud, profiting from artificial intelligence, machine learning, and classifiers. Model-based diagnostic approaches and data-driven methods are attracting the interest of the scientific community for the automatic detection of phenomena like the occurrence of hot spots, the increase of the ohmic losses, the degradation due to unexpected potentials (PID), switch failures in power electronic converters, and also the reduction of the power production due to soiling or partial shadowing. The detection of malfunctioning or even faults affecting the whole power conversion chain, from the photovoltaic modules to the power conversion stages, allows to perform proper control actions, also in terms of MPPT. Control algorithms, running on an embedded system, are optimized, e.g., through the online adaptation of their own parameters, by suitably processing data coming from the diagnostic algorithms. This book presents recent and original results about the diagnostic approaches to photovoltaic modules and related power electronics and control strategies with the aim to maximize the photovoltaic output power, to increase the whole system efficiency and to guarantee service continuity.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
In modern photovoltaic systems, there is an ever-increasing need to improve the system efficiency, to detect internal faults and to guarantee service continuity. The only way to meet these objectives is to utilize and create synergies between diagnostic techniques and control algorithms. Diagnostic methods can be implemented through module-dedicated electronics, by running on real-time embedded systems or by using a huge database on the cloud, profiting from artificial intelligence, machine learning, and classifiers. Model-based diagnostic approaches and data-driven methods are attracting the interest of the scientific community for the automatic detection of phenomena like the occurrence of hot spots, the increase of the ohmic losses, the degradation due to unexpected potentials (PID), switch failures in power electronic converters, and also the reduction of the power production due to soiling or partial shadowing. The detection of malfunctioning or even faults affecting the whole power conversion chain, from the photovoltaic modules to the power conversion stages, allows to perform proper control actions, also in terms of MPPT. Control algorithms, running on an embedded system, are optimized, e.g., through the online adaptation of their own parameters, by suitably processing data coming from the diagnostic algorithms. This book presents recent and original results about the diagnostic approaches to photovoltaic modules and related power electronics and control strategies with the aim to maximize the photovoltaic output power, to increase the whole system efficiency and to guarantee service continuity.