Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Search for tt H Production in the H   bb  Decay Channel: Using Deep Learning Techniques with the CMS Experiment
Hardback

Search for tt H Production in the H bb Decay Channel: Using Deep Learning Techniques with the CMS Experiment

$276.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

In 1964, a mechanism explaining the origin of particle masses was proposed by Robert Brout, Francois Englert, and Peter W. Higgs. 48 years later, in 2012, the so-called Higgs boson was discovered in proton-proton collisions recorded by experiments at the LHC. Since then, its ability to interact with quarks remained experimentally unconfirmed.

This book presents a search for Higgs bosons produced in association with top quarks tt H in data recorded with the CMS detector in 2016. It focuses on Higgs boson decays into bottom quarks H
bb and top quark pair decays involving at least one lepton. In this analysis, a multiclass classification approach using deep learning techniques was applied for the first time. In light of the dominant background contribution from tt production, the developed method proved to achieve superior sensitivity with respect to existing techniques. In combination with searches in different decay channels, the presented work contributed to the first observations of tt H production and H
bb decays.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Springer Nature Switzerland AG
Country
Switzerland
Date
26 February 2021
Pages
217
ISBN
9783030653798

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

In 1964, a mechanism explaining the origin of particle masses was proposed by Robert Brout, Francois Englert, and Peter W. Higgs. 48 years later, in 2012, the so-called Higgs boson was discovered in proton-proton collisions recorded by experiments at the LHC. Since then, its ability to interact with quarks remained experimentally unconfirmed.

This book presents a search for Higgs bosons produced in association with top quarks tt H in data recorded with the CMS detector in 2016. It focuses on Higgs boson decays into bottom quarks H
bb and top quark pair decays involving at least one lepton. In this analysis, a multiclass classification approach using deep learning techniques was applied for the first time. In light of the dominant background contribution from tt production, the developed method proved to achieve superior sensitivity with respect to existing techniques. In combination with searches in different decay channels, the presented work contributed to the first observations of tt H production and H
bb decays.

Read More
Format
Hardback
Publisher
Springer Nature Switzerland AG
Country
Switzerland
Date
26 February 2021
Pages
217
ISBN
9783030653798