Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
La theorie des groupes algebriques sur un corps arbitraire est l'une des branches les plus merveilleuses des mathematiques modernes. Cette monographie porte sur les groupes algebriques semi-simples definis sur un corps k de dimension cohomologique separable 2 et la cohomologie galoisienne d'iceux. La question ouverte la plus importante est la conjecture II de Serre (1962) qui predit l'annulation de la cohomologie galoisienne d'un groupe semi-simple simplement connexe. Utilisant principalement des techniques de groupes algebriques, on couvre tous les cas connus de la conjecture: les cas classiques (dus a Bayer-Fluckiger and Parimala) ainsi que les avancees sur les cas exceptionnels restants (par exemple de type E8). Ceci s'applique a la classification des groupes semi-simples.
The theory of algebraic groups over arbitrary fields is one of the most beautiful branches of modern mathematics. This monograph deals with semisimple algebraic groups over a general field k of separable cohomological dimension ^ to Bayer-Fluckiger and Parimala), and some perspectives are given on the remaining exceptional cases (e.g., G of type E8). Applications to the classification of semisimple k-groups are presented.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
La theorie des groupes algebriques sur un corps arbitraire est l'une des branches les plus merveilleuses des mathematiques modernes. Cette monographie porte sur les groupes algebriques semi-simples definis sur un corps k de dimension cohomologique separable 2 et la cohomologie galoisienne d'iceux. La question ouverte la plus importante est la conjecture II de Serre (1962) qui predit l'annulation de la cohomologie galoisienne d'un groupe semi-simple simplement connexe. Utilisant principalement des techniques de groupes algebriques, on couvre tous les cas connus de la conjecture: les cas classiques (dus a Bayer-Fluckiger and Parimala) ainsi que les avancees sur les cas exceptionnels restants (par exemple de type E8). Ceci s'applique a la classification des groupes semi-simples.
The theory of algebraic groups over arbitrary fields is one of the most beautiful branches of modern mathematics. This monograph deals with semisimple algebraic groups over a general field k of separable cohomological dimension ^ to Bayer-Fluckiger and Parimala), and some perspectives are given on the remaining exceptional cases (e.g., G of type E8). Applications to the classification of semisimple k-groups are presented.