Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Introduction to Louis Michel's lattice geometry through group action
Hardback

Introduction to Louis Michel’s lattice geometry through group action

$463.99
Sign in or become a Readings Member to add this title to your wishlist.

Group action analysis developed and applied mainly by Louis Michel to the study of N-dimensional periodic lattices is the main subject of the book. Different basic mathematical tools currently used for the description of lattice geometry are introduced and illustrated through applications to crystal structures in two- and three-dimensional space, to abstract multi-dimensional lattices and to lattices associated with integrable dynamical systems. Starting from general Delone sets authors turn to different symmetry and topological classifications including explicit construction of orbifolds for two- and three-dimensional point and space groups. Voronoi and Delone cells together with positive quadratic forms and lattice description by root systems are introduced to demonstrate alternative approaches to lattice geometry study. Zonotopes and zonohedral families of 2-, 3-, 4-, 5-dimensional lattices are explicitly visualized using graph theory approach. Along with crystallographic applications, qualitative features of lattices of quantum states appearing for quantum problems associated with classical Hamiltonian integrable dynamical systems are shortly discussed. The presentation of the material is done through a number of concrete examples with an extensive use of graphical visualization. The book is addressed to graduated and post-graduate students and young researches in theoretical physics, dynamical systems, applied mathematics, solid state physics, crystallography, molecular physics, theoretical chemistry, …

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
EDP Sciences
Date
4 December 2015
Pages
262
ISBN
9782759817382

Group action analysis developed and applied mainly by Louis Michel to the study of N-dimensional periodic lattices is the main subject of the book. Different basic mathematical tools currently used for the description of lattice geometry are introduced and illustrated through applications to crystal structures in two- and three-dimensional space, to abstract multi-dimensional lattices and to lattices associated with integrable dynamical systems. Starting from general Delone sets authors turn to different symmetry and topological classifications including explicit construction of orbifolds for two- and three-dimensional point and space groups. Voronoi and Delone cells together with positive quadratic forms and lattice description by root systems are introduced to demonstrate alternative approaches to lattice geometry study. Zonotopes and zonohedral families of 2-, 3-, 4-, 5-dimensional lattices are explicitly visualized using graph theory approach. Along with crystallographic applications, qualitative features of lattices of quantum states appearing for quantum problems associated with classical Hamiltonian integrable dynamical systems are shortly discussed. The presentation of the material is done through a number of concrete examples with an extensive use of graphical visualization. The book is addressed to graduated and post-graduate students and young researches in theoretical physics, dynamical systems, applied mathematics, solid state physics, crystallography, molecular physics, theoretical chemistry, …

Read More
Format
Hardback
Publisher
EDP Sciences
Date
4 December 2015
Pages
262
ISBN
9782759817382