Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This book presents the basics of the non-invasive geophysical method for groundwater investigation, called Magnetic Resonance Sounding (MRS) or Surface Nuclear Magnetic Resonance (SNMR), and its practical application to the problems of groundwater localization and aquifer characterization. The method is based on the nuclear magnetic resonance (NMR) phenomenon and is selectively sensitive to groundwater. The main aims of the author are to teach the reader the basic principles of the method as well as to formulate consistent approximate models, leading to reasonably simple inverse problems. Containing an extensive bibliography, numerous practical and numerical examples as well as a detailed presentation of the nuts and bolts of the method based on the long-term experience of SNMR development and practical use, this book is useful for students, scientists and professional engineers working in the field of hydrogeophysics and hydrogeology.
Contents
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This book presents the basics of the non-invasive geophysical method for groundwater investigation, called Magnetic Resonance Sounding (MRS) or Surface Nuclear Magnetic Resonance (SNMR), and its practical application to the problems of groundwater localization and aquifer characterization. The method is based on the nuclear magnetic resonance (NMR) phenomenon and is selectively sensitive to groundwater. The main aims of the author are to teach the reader the basic principles of the method as well as to formulate consistent approximate models, leading to reasonably simple inverse problems. Containing an extensive bibliography, numerous practical and numerical examples as well as a detailed presentation of the nuts and bolts of the method based on the long-term experience of SNMR development and practical use, this book is useful for students, scientists and professional engineers working in the field of hydrogeophysics and hydrogeology.
Contents