Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Deep Learning for Beginners: A beginner's guide to getting up and running with deep learning from scratch using Python
Paperback

Deep Learning for Beginners: A beginner’s guide to getting up and running with deep learning from scratch using Python

$105.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Implement supervised, unsupervised, and generative deep learning (DL) models using Keras and Dopamine with TensorFlow

Key Features

Understand the fundamental machine learning concepts useful in deep learning Learn the underlying mathematical concepts as you implement deep learning models from scratch Explore easy-to-understand examples and use cases that will help you build a solid foundation in DL

Book DescriptionWith information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning. This book is designed to help you if you’re a beginner looking to work on deep learning and build deep learning models from scratch, and you already have the basic mathematical and programming knowledge required to get started.

The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples, and learn how to build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you’ve learned through the course of the book.

By the end of this book, you’ll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks.

What you will learn

Implement recurrent neural networks (RNNs) and long short-term memory (LSTM) for image classification and natural language processing tasks Explore the role of convolutional neural networks (CNNs) in computer vision and signal processing Discover the ethical implications of deep learning modeling Understand the mathematical terminology associated with deep learning Code a generative adversarial network (GAN) and a variational autoencoder (VAE) to generate images from a learned latent space Implement visualization techniques to compare AEs and VAEs

Who this book is forThis book is for aspiring data scientists and deep learning engineers who want to get started with the fundamentals of deep learning and neural networks. Although no prior knowledge of deep learning or machine learning is required, familiarity with linear algebra and Python programming is necessary to get started.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Date
18 September 2020
Pages
432
ISBN
9781838640859

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Implement supervised, unsupervised, and generative deep learning (DL) models using Keras and Dopamine with TensorFlow

Key Features

Understand the fundamental machine learning concepts useful in deep learning Learn the underlying mathematical concepts as you implement deep learning models from scratch Explore easy-to-understand examples and use cases that will help you build a solid foundation in DL

Book DescriptionWith information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning. This book is designed to help you if you’re a beginner looking to work on deep learning and build deep learning models from scratch, and you already have the basic mathematical and programming knowledge required to get started.

The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples, and learn how to build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you’ve learned through the course of the book.

By the end of this book, you’ll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks.

What you will learn

Implement recurrent neural networks (RNNs) and long short-term memory (LSTM) for image classification and natural language processing tasks Explore the role of convolutional neural networks (CNNs) in computer vision and signal processing Discover the ethical implications of deep learning modeling Understand the mathematical terminology associated with deep learning Code a generative adversarial network (GAN) and a variational autoencoder (VAE) to generate images from a learned latent space Implement visualization techniques to compare AEs and VAEs

Who this book is forThis book is for aspiring data scientists and deep learning engineers who want to get started with the fundamentals of deep learning and neural networks. Although no prior knowledge of deep learning or machine learning is required, familiarity with linear algebra and Python programming is necessary to get started.

Read More
Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Date
18 September 2020
Pages
432
ISBN
9781838640859