Fundamentals of Analytics Engineering

Dumky De Wilde, Fanny Kassapian, Jovan Gligorevic, Juan Manuel Perafan, Lasse Benninga, Ricardo Angel Granados Lopez, Tais Laurindo Pereira

Fundamentals of Analytics Engineering
Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Published
29 March 2024
Pages
332
ISBN
9781837636457

Fundamentals of Analytics Engineering

Dumky De Wilde, Fanny Kassapian, Jovan Gligorevic, Juan Manuel Perafan, Lasse Benninga, Ricardo Angel Granados Lopez, Tais Laurindo Pereira

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Gain a holistic understanding of the analytics engineering lifecycle by integrating principles from both data analysis and engineering

Key Features

Discover how analytics engineering aligns with your organization's data strategy Access insights shared by a team of seven industry experts Tackle common analytics engineering problems faced by modern businesses Purchase of the print or Kindle book includes a free PDF eBook

Book DescriptionWritten by a team of 7 industry experts, Fundamentals of Analytics Engineering will introduce you to everything from foundational concepts to advanced skills to get started as an analytics engineer. After conquering data ingestion and techniques for data quality and scalability, you'll learn about techniques such as data cleaning transformation, data modeling, SQL query optimization and reuse, and serving data across different platforms. Armed with this knowledge, you will implement a simple data platform from ingestion to visualization, using tools like Airbyte Cloud, Google BigQuery, dbt, and Tableau. You'll also get to grips with strategies for data integrity with a focus on data quality and observability, along with collaborative coding practices like version control with Git. You'll learn about advanced principles like CI/CD, automating workflows, gathering, scoping, and documenting business requirements, as well as data governance. By the end of this book, you'll be armed with the essential techniques and best practices for developing scalable analytics solutions from end to end.What you will learn

Design and implement data pipelines from ingestion to serving data Explore best practices for data modeling and schema design Scale data processing with cloud based analytics platforms and tools Understand the principles of data quality management and data governance Streamline code base with best practices like collaborative coding, version control, reviews and standards Automate and orchestrate data pipelines Drive business adoption with effective scoping and prioritization of analytics use cases

Who this book is forThis book is for data engineers and data analysts considering pivoting their careers into analytics engineering. Analytics engineers who want to upskill and search for gaps in their knowledge will also find this book helpful, as will other data professionals who want to understand the value of analytics engineering in their organization's journey toward data maturity. To get the most out of this book, you should have a basic understanding of data analysis and engineering concepts such as data cleaning, visualization, ETL and data warehousing.

This item is not currently in-stock. It can be ordered online and is expected to ship in 7-14 days

Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.

Sign in or become a Readings Member to add this title to a wishlist.