Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Quantum Machine Learning and Optimisation in Finance
Paperback

Quantum Machine Learning and Optimisation in Finance

$111.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Get a detailed introduction to quantum computing and quantum machine learning, with a focus on finance-related applications

Key Features

Find out how quantum algorithms enhance financial modeling and decision-making Improve your knowledge of the variety of quantum machine learning and optimisation algorithms Look into practical near-term applications for tackling real-world financial challenges Purchase of the print or Kindle book includes a free PDF eBook

Book DescriptionAs quantum machine learning (QML) continues to evolve, many professionals struggle to apply its powerful algorithms to real-world problems using noisy intermediate-scale quantum (NISQ) hardware. This book bridges that gap by focusing on hands-on QML applications tailored to NISQ systems, moving beyond the traditional textbook approaches that explore standard algorithms like Shor's and Grover's, which lie beyond current NISQ capabilities. You'll get to grips with major QML algorithms that have been widely studied for their transformative potential in finance and learn hybrid quantum-classical computational protocols, the most effective way to leverage quantum and classical computing systems together. The authors, Antoine Jacquier, a distinguished researcher in quantum computing and stochastic analysis, and Oleksiy Kondratyev, a Quant of the Year awardee with over 20 years in quantitative finance, offer a hardware-agnostic perspective. They present a balanced view of both analog and digital quantum computers, delving into the fundamental characteristics of the algorithms while highlighting the practical limitations of today's quantum hardware. By the end of this quantum book, you'll have a deeper understanding of the significance of quantum computing in finance and the skills needed to apply QML to solve complex challenges, driving innovation in your work. What you will learn

Familiarize yourself with analog and digital quantum computing principles and methods Explore solutions to NP-hard combinatorial optimisation problems using quantum annealers Build and train quantum neural networks for classification and market generation Discover how to leverage quantum feature maps for enhanced data representation Work with variational algorithms to optimise quantum processes Implement symmetric encryption techniques on a quantum computer

Who this book is forThis book is for academic researchers, STEM students, finance professionals in quantitative finance, and AI/ML experts. No prior knowledge of quantum mechanics is needed. Mathematical concepts are rigorously presented, but the emphasis is on understanding the fundamental properties of models and algorithms, making them accessible to a broader audience. With its deep coverage of QML applications for solving real-world financial challenges, this guide is an essential resource for anyone interested in finance and quantum computing.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Date
31 December 2024
Pages
494
ISBN
9781836209614

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Get a detailed introduction to quantum computing and quantum machine learning, with a focus on finance-related applications

Key Features

Find out how quantum algorithms enhance financial modeling and decision-making Improve your knowledge of the variety of quantum machine learning and optimisation algorithms Look into practical near-term applications for tackling real-world financial challenges Purchase of the print or Kindle book includes a free PDF eBook

Book DescriptionAs quantum machine learning (QML) continues to evolve, many professionals struggle to apply its powerful algorithms to real-world problems using noisy intermediate-scale quantum (NISQ) hardware. This book bridges that gap by focusing on hands-on QML applications tailored to NISQ systems, moving beyond the traditional textbook approaches that explore standard algorithms like Shor's and Grover's, which lie beyond current NISQ capabilities. You'll get to grips with major QML algorithms that have been widely studied for their transformative potential in finance and learn hybrid quantum-classical computational protocols, the most effective way to leverage quantum and classical computing systems together. The authors, Antoine Jacquier, a distinguished researcher in quantum computing and stochastic analysis, and Oleksiy Kondratyev, a Quant of the Year awardee with over 20 years in quantitative finance, offer a hardware-agnostic perspective. They present a balanced view of both analog and digital quantum computers, delving into the fundamental characteristics of the algorithms while highlighting the practical limitations of today's quantum hardware. By the end of this quantum book, you'll have a deeper understanding of the significance of quantum computing in finance and the skills needed to apply QML to solve complex challenges, driving innovation in your work. What you will learn

Familiarize yourself with analog and digital quantum computing principles and methods Explore solutions to NP-hard combinatorial optimisation problems using quantum annealers Build and train quantum neural networks for classification and market generation Discover how to leverage quantum feature maps for enhanced data representation Work with variational algorithms to optimise quantum processes Implement symmetric encryption techniques on a quantum computer

Who this book is forThis book is for academic researchers, STEM students, finance professionals in quantitative finance, and AI/ML experts. No prior knowledge of quantum mechanics is needed. Mathematical concepts are rigorously presented, but the emphasis is on understanding the fundamental properties of models and algorithms, making them accessible to a broader audience. With its deep coverage of QML applications for solving real-world financial challenges, this guide is an essential resource for anyone interested in finance and quantum computing.

Read More
Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Date
31 December 2024
Pages
494
ISBN
9781836209614