Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Accelerate Model Training with PyTorch 2.X
Paperback

Accelerate Model Training with PyTorch 2.X

$111.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Dramatically accelerate the building process of complex models using PyTorch to extract the best performance from any computing environment

Key Features

Reduce the model-building time by applying optimization techniques and approaches Harness the computing power of multiple devices and machines to boost the training process Focus on model quality by quickly evaluating different model configurations Purchase of the print or Kindle book includes a free PDF eBook

Book DescriptionThis book, written by an HPC expert with over 25 years of experience, guides you through enhancing model training performance using PyTorch. Here you'll learn how model complexity impacts training time and discover performance tuning levels to expedite the process, as well as utilize PyTorch features, specialized libraries, and efficient data pipelines to optimize training on CPUs and accelerators. You'll also reduce model complexity, adopt mixed precision, and harness the power of multicore systems and multi-GPU environments for distributed training. By the end, you'll be equipped with techniques and strategies to speed up training and focus on building stunning models.What you will learn

Compile the model to train it faster Use specialized libraries to optimize the training on the CPU Build a data pipeline to boost GPU execution Simplify the model through pruning and compression techniques Adopt automatic mixed precision without penalizing the model's accuracy Distribute the training step across multiple machines and devices

Who this book is forThis book is for intermediate-level data scientists who want to learn how to leverage PyTorch to speed up the training process of their machine learning models by employing a set of optimization strategies and techniques. To make the most of this book, familiarity with basic concepts of machine learning, PyTorch, and Python is essential. However, there is no obligation to have a prior understanding of distributed computing, accelerators, or multicore processors.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Date
30 April 2024
Pages
230
ISBN
9781805120100

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Dramatically accelerate the building process of complex models using PyTorch to extract the best performance from any computing environment

Key Features

Reduce the model-building time by applying optimization techniques and approaches Harness the computing power of multiple devices and machines to boost the training process Focus on model quality by quickly evaluating different model configurations Purchase of the print or Kindle book includes a free PDF eBook

Book DescriptionThis book, written by an HPC expert with over 25 years of experience, guides you through enhancing model training performance using PyTorch. Here you'll learn how model complexity impacts training time and discover performance tuning levels to expedite the process, as well as utilize PyTorch features, specialized libraries, and efficient data pipelines to optimize training on CPUs and accelerators. You'll also reduce model complexity, adopt mixed precision, and harness the power of multicore systems and multi-GPU environments for distributed training. By the end, you'll be equipped with techniques and strategies to speed up training and focus on building stunning models.What you will learn

Compile the model to train it faster Use specialized libraries to optimize the training on the CPU Build a data pipeline to boost GPU execution Simplify the model through pruning and compression techniques Adopt automatic mixed precision without penalizing the model's accuracy Distribute the training step across multiple machines and devices

Who this book is forThis book is for intermediate-level data scientists who want to learn how to leverage PyTorch to speed up the training process of their machine learning models by employing a set of optimization strategies and techniques. To make the most of this book, familiarity with basic concepts of machine learning, PyTorch, and Python is essential. However, there is no obligation to have a prior understanding of distributed computing, accelerators, or multicore processors.

Read More
Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Date
30 April 2024
Pages
230
ISBN
9781805120100