Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Learn the fundamentals of statistics and machine learning using R libraries for data processing, visualization, model training, and statistical inference
Key Features
Advance your ML career with the help of detailed explanations, intuitive illustrations, and code examples Gain practical insights into the real-world applications of statistics and machine learning Explore the technicalities of statistics and machine learning for effective data presentation Purchase of the print or Kindle book includes a free PDF eBook
Book DescriptionThe Statistics and Machine Learning with R Workshop is a comprehensive resource packed with insights into statistics and machine learning, along with a deep dive into R libraries. The learning experience is further enhanced by practical examples and hands-on exercises that provide explanations of key concepts. Starting with the fundamentals, you'll explore the complete model development process, covering everything from data pre-processing to model development. In addition to machine learning, you'll also delve into R's statistical capabilities, learning to manipulate various data types and tackle complex mathematical challenges from algebra and calculus to probability and Bayesian statistics. You'll discover linear regression techniques and more advanced statistical methodologies to hone your skills and advance your career. By the end of this book, you'll have a robust foundational understanding of statistics and machine learning. You'll also be proficient in using R's extensive libraries for tasks such as data processing and model training and be well-equipped to leverage the full potential of R in your future projects.What you will learn
Hone your skills in different probability distributions and hypothesis testing Explore the fundamentals of linear algebra and calculus Master crucial statistics and machine learning concepts in theory and practice Discover essential data processing and visualization techniques Engage in interactive data analysis using R Use R to perform statistical modeling, including Bayesian and linear regression
Who this book is forThis book is for beginner to intermediate-level data scientists, undergraduate to masters-level students, and early to mid-senior data scientists or analysts looking to expand their knowledge of machine learning by exploring various R libraries. Basic knowledge of linear algebra and data modeling is a must.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Learn the fundamentals of statistics and machine learning using R libraries for data processing, visualization, model training, and statistical inference
Key Features
Advance your ML career with the help of detailed explanations, intuitive illustrations, and code examples Gain practical insights into the real-world applications of statistics and machine learning Explore the technicalities of statistics and machine learning for effective data presentation Purchase of the print or Kindle book includes a free PDF eBook
Book DescriptionThe Statistics and Machine Learning with R Workshop is a comprehensive resource packed with insights into statistics and machine learning, along with a deep dive into R libraries. The learning experience is further enhanced by practical examples and hands-on exercises that provide explanations of key concepts. Starting with the fundamentals, you'll explore the complete model development process, covering everything from data pre-processing to model development. In addition to machine learning, you'll also delve into R's statistical capabilities, learning to manipulate various data types and tackle complex mathematical challenges from algebra and calculus to probability and Bayesian statistics. You'll discover linear regression techniques and more advanced statistical methodologies to hone your skills and advance your career. By the end of this book, you'll have a robust foundational understanding of statistics and machine learning. You'll also be proficient in using R's extensive libraries for tasks such as data processing and model training and be well-equipped to leverage the full potential of R in your future projects.What you will learn
Hone your skills in different probability distributions and hypothesis testing Explore the fundamentals of linear algebra and calculus Master crucial statistics and machine learning concepts in theory and practice Discover essential data processing and visualization techniques Engage in interactive data analysis using R Use R to perform statistical modeling, including Bayesian and linear regression
Who this book is forThis book is for beginner to intermediate-level data scientists, undergraduate to masters-level students, and early to mid-senior data scientists or analysts looking to expand their knowledge of machine learning by exploring various R libraries. Basic knowledge of linear algebra and data modeling is a must.