Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Applied Machine Learning and High-Performance Computing on AWS
Paperback

Applied Machine Learning and High-Performance Computing on AWS

$111.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Build, train, and deploy large machine learning models at scale in various domains such as computational fluid dynamics, genomics, autonomous vehicles, and numerical optimization using Amazon SageMaker

Key Features

Understand the need for high-performance computing (HPC) Build, train, and deploy large ML models with billions of parameters using Amazon SageMaker Learn best practices and architectures for implementing ML at scale using HPC

Book DescriptionMachine learning (ML) and high-performance computing (HPC) on AWS run compute-intensive workloads across industries and emerging applications. Its use cases can be linked to various verticals, such as computational fluid dynamics (CFD), genomics, and autonomous vehicles.

This book provides end-to-end guidance, starting with HPC concepts for storage and networking. It then progresses to working examples on how to process large datasets using SageMaker Studio and EMR. Next, you'll learn how to build, train, and deploy large models using distributed training. Later chapters also guide you through deploying models to edge devices using SageMaker and IoT Greengrass, and performance optimization of ML models, for low latency use cases.

By the end of this book, you'll be able to build, train, and deploy your own large-scale ML application, using HPC on AWS, following industry best practices and addressing the key pain points encountered in the application life cycle.

What you will learn

Explore data management, storage, and fast networking for HPC applications Focus on the analysis and visualization of a large volume of data using Spark Train visual transformer models using SageMaker distributed training Deploy and manage ML models at scale on the cloud and at the edge Get to grips with performance optimization of ML models for low latency workloads Apply HPC to industry domains such as CFD, genomics, AV, and optimization

Who this book is forThe book begins with HPC concepts, however, it expects you to have prior machine learning knowledge. This book is for ML engineers and data scientists interested in learning advanced topics on using large datasets for training large models using distributed training concepts on AWS, deploying models at scale, and performance optimization for low latency use cases. Practitioners in fields such as numerical optimization, computation fluid dynamics, autonomous vehicles, and genomics, who require HPC for applying ML models to applications at scale will also find the book useful.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Date
30 December 2022
Pages
382
ISBN
9781803237015

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Build, train, and deploy large machine learning models at scale in various domains such as computational fluid dynamics, genomics, autonomous vehicles, and numerical optimization using Amazon SageMaker

Key Features

Understand the need for high-performance computing (HPC) Build, train, and deploy large ML models with billions of parameters using Amazon SageMaker Learn best practices and architectures for implementing ML at scale using HPC

Book DescriptionMachine learning (ML) and high-performance computing (HPC) on AWS run compute-intensive workloads across industries and emerging applications. Its use cases can be linked to various verticals, such as computational fluid dynamics (CFD), genomics, and autonomous vehicles.

This book provides end-to-end guidance, starting with HPC concepts for storage and networking. It then progresses to working examples on how to process large datasets using SageMaker Studio and EMR. Next, you'll learn how to build, train, and deploy large models using distributed training. Later chapters also guide you through deploying models to edge devices using SageMaker and IoT Greengrass, and performance optimization of ML models, for low latency use cases.

By the end of this book, you'll be able to build, train, and deploy your own large-scale ML application, using HPC on AWS, following industry best practices and addressing the key pain points encountered in the application life cycle.

What you will learn

Explore data management, storage, and fast networking for HPC applications Focus on the analysis and visualization of a large volume of data using Spark Train visual transformer models using SageMaker distributed training Deploy and manage ML models at scale on the cloud and at the edge Get to grips with performance optimization of ML models for low latency workloads Apply HPC to industry domains such as CFD, genomics, AV, and optimization

Who this book is forThe book begins with HPC concepts, however, it expects you to have prior machine learning knowledge. This book is for ML engineers and data scientists interested in learning advanced topics on using large datasets for training large models using distributed training concepts on AWS, deploying models at scale, and performance optimization for low latency use cases. Practitioners in fields such as numerical optimization, computation fluid dynamics, autonomous vehicles, and genomics, who require HPC for applying ML models to applications at scale will also find the book useful.

Read More
Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Date
30 December 2022
Pages
382
ISBN
9781803237015