Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Hyperparameter Tuning with Python: Boost your machine learning model's performance via hyperparameter tuning
Paperback

Hyperparameter Tuning with Python: Boost your machine learning model’s performance via hyperparameter tuning

$111.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Take your machine learning models to the next level by learning how to leverage hyperparameter tuning, allowing you to control the model’s finest details

Key Features

Gain a deep understanding of how hyperparameter tuning works Explore exhaustive search, heuristic search, and Bayesian and multi-fidelity optimization methods Learn which method should be used to solve a specific situation or problem

Book DescriptionHyperparameters are an important element in building useful machine learning models. This book curates numerous hyperparameter tuning methods for Python, one of the most popular coding languages for machine learning. Alongside in-depth explanations of how each method works, you will use a decision map that can help you identify the best tuning method for your requirements.

You’ll start with an introduction to hyperparameter tuning and understand why it’s important. Next, you’ll learn the best methods for hyperparameter tuning for a variety of use cases and specific algorithm types. This book will not only cover the usual grid or random search but also other powerful underdog methods. Individual chapters are also dedicated to the three main groups of hyperparameter tuning methods: exhaustive search, heuristic search, Bayesian optimization, and multi-fidelity optimization. Later, you will learn about top frameworks like Scikit, Hyperopt, Optuna, NNI, and DEAP to implement hyperparameter tuning. Finally, you will cover hyperparameters of popular algorithms and best practices that will help you efficiently tune your hyperparameter.

By the end of this book, you will have the skills you need to take full control over your machine learning models and get the best models for the best results.

What you will learn

Discover hyperparameter space and types of hyperparameter distributions Explore manual, grid, and random search, and the pros and cons of each Understand powerful underdog methods along with best practices Explore the hyperparameters of popular algorithms Discover how to tune hyperparameters in different frameworks and libraries Deep dive into top frameworks such as Scikit, Hyperopt, Optuna, NNI, and DEAP Get to grips with best practices that you can apply to your machine learning models right away

Who this book is forThis book is for data scientists and ML engineers who are working with Python and want to further boost their ML model’s performance by using the appropriate hyperparameter tuning method. Although a basic understanding of machine learning and how to code in Python is needed, no prior knowledge of hyperparameter tuning in Python is required.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Date
29 July 2022
Pages
306
ISBN
9781803235875

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Take your machine learning models to the next level by learning how to leverage hyperparameter tuning, allowing you to control the model’s finest details

Key Features

Gain a deep understanding of how hyperparameter tuning works Explore exhaustive search, heuristic search, and Bayesian and multi-fidelity optimization methods Learn which method should be used to solve a specific situation or problem

Book DescriptionHyperparameters are an important element in building useful machine learning models. This book curates numerous hyperparameter tuning methods for Python, one of the most popular coding languages for machine learning. Alongside in-depth explanations of how each method works, you will use a decision map that can help you identify the best tuning method for your requirements.

You’ll start with an introduction to hyperparameter tuning and understand why it’s important. Next, you’ll learn the best methods for hyperparameter tuning for a variety of use cases and specific algorithm types. This book will not only cover the usual grid or random search but also other powerful underdog methods. Individual chapters are also dedicated to the three main groups of hyperparameter tuning methods: exhaustive search, heuristic search, Bayesian optimization, and multi-fidelity optimization. Later, you will learn about top frameworks like Scikit, Hyperopt, Optuna, NNI, and DEAP to implement hyperparameter tuning. Finally, you will cover hyperparameters of popular algorithms and best practices that will help you efficiently tune your hyperparameter.

By the end of this book, you will have the skills you need to take full control over your machine learning models and get the best models for the best results.

What you will learn

Discover hyperparameter space and types of hyperparameter distributions Explore manual, grid, and random search, and the pros and cons of each Understand powerful underdog methods along with best practices Explore the hyperparameters of popular algorithms Discover how to tune hyperparameters in different frameworks and libraries Deep dive into top frameworks such as Scikit, Hyperopt, Optuna, NNI, and DEAP Get to grips with best practices that you can apply to your machine learning models right away

Who this book is forThis book is for data scientists and ML engineers who are working with Python and want to further boost their ML model’s performance by using the appropriate hyperparameter tuning method. Although a basic understanding of machine learning and how to code in Python is needed, no prior knowledge of hyperparameter tuning in Python is required.

Read More
Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Date
29 July 2022
Pages
306
ISBN
9781803235875