Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
In the automotive industry, the need to reduce vehicle weight has given rise to extensive research efforts to develop aluminum and magnesium alloys for structural car body parts. In aerospace, the move toward composite airframe structures urged an increased use of formable titanium alloys. In steel research, there are ongoing efforts to design novel damage-controlled forming processes for a new generation of efficient and reliable lightweight steel components. All these materials, and more, constitute today’s research mission for lightweight structures. They provide a fertile materials science research field aiming to achieve a better understanding of the interplay between industrial processing, microstructure development, and the resulting material properties.
Advancements in the Processing, Characterization, and Application of Lightweight Materials provides the recent advancements in the lightweight mat materials processing, manufacturing, and characterization. This book identifies the need for modern tools and techniques for designing lightweight materials and addresses multidisciplinary approaches for applying their use. Covering topics such as numerical optimization, fatigue characterization, and process evaluation, this text is an essential resource for materials engineers, manufacturers, practitioners, engineers, academicians, chief research officers, researchers, students, and vice presidents of research in government, industry, and academia.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
In the automotive industry, the need to reduce vehicle weight has given rise to extensive research efforts to develop aluminum and magnesium alloys for structural car body parts. In aerospace, the move toward composite airframe structures urged an increased use of formable titanium alloys. In steel research, there are ongoing efforts to design novel damage-controlled forming processes for a new generation of efficient and reliable lightweight steel components. All these materials, and more, constitute today’s research mission for lightweight structures. They provide a fertile materials science research field aiming to achieve a better understanding of the interplay between industrial processing, microstructure development, and the resulting material properties.
Advancements in the Processing, Characterization, and Application of Lightweight Materials provides the recent advancements in the lightweight mat materials processing, manufacturing, and characterization. This book identifies the need for modern tools and techniques for designing lightweight materials and addresses multidisciplinary approaches for applying their use. Covering topics such as numerical optimization, fatigue characterization, and process evaluation, this text is an essential resource for materials engineers, manufacturers, practitioners, engineers, academicians, chief research officers, researchers, students, and vice presidents of research in government, industry, and academia.