Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Mastering Azure Machine Learning: Perform large-scale end-to-end advanced machine learning in the cloud with Microsoft Azure Machine Learning
Paperback

Mastering Azure Machine Learning: Perform large-scale end-to-end advanced machine learning in the cloud with Microsoft Azure Machine Learning

$116.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Master expert techniques for building automated and highly scalable end-to-end machine learning models and pipelines in Azure using TensorFlow, Spark, and Kubernetes

Key Features

Make sense of data on the cloud by implementing advanced analytics Train and optimize advanced deep learning models efficiently on Spark using Azure Databricks Deploy machine learning models for batch and real-time scoring with Azure Kubernetes Service (AKS)

Book DescriptionThe increase being seen in data volume today requires distributed systems, powerful algorithms, and scalable cloud infrastructure to compute insights and train and deploy machine learning (ML) models. This book will help you improve your knowledge of building ML models using Azure and end-to-end ML pipelines on the cloud.

The book starts with an overview of an end-to-end ML project and a guide on how to choose the right Azure service for different ML tasks. It then focuses on Azure Machine Learning and takes you through the process of data experimentation, data preparation, and feature engineering using Azure Machine Learning and Python. You’ll learn advanced feature extraction techniques using natural language processing (NLP), classical ML techniques, and the secrets of both a great recommendation engine and a performant computer vision model using deep learning methods. You’ll also explore how to train, optimize, and tune models using Azure Automated Machine Learning and HyperDrive, and perform distributed training on Azure. Then, you’ll learn different deployment and monitoring techniques using Azure Kubernetes Services with Azure Machine Learning, along with the basics of MLOps-DevOps for ML to automate your ML process as CI/CD pipeline.

By the end of this book, you’ll have mastered Azure Machine Learning and be able to confidently design, build and operate scalable ML pipelines in Azure.

What you will learn

Setup your Azure Machine Learning workspace for data experimentation and visualization Perform ETL, data preparation, and feature extraction using Azure best practices Implement advanced feature extraction using NLP and word embeddings Train gradient boosted tree-ensembles, recommendation engines and deep neural networks on Azure Machine Learning Use hyperparameter tuning and Azure Automated Machine Learning to optimize your ML models Employ distributed ML on GPU clusters using Horovod in Azure Machine Learning Deploy, operate and manage your ML models at scale Automated your end-to-end ML process as CI/CD pipelines for MLOps

Who this book is forThis machine learning book is for data professionals, data analysts, data engineers, data scientists, or machine learning developers who want to master scalable cloud-based machine learning architectures in Azure. This book will help you use advanced Azure services to build intelligent machine learning applications. A basic understanding of Python and working knowledge of machine learning are mandatory.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Date
30 April 2020
Pages
436
ISBN
9781789807554

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Master expert techniques for building automated and highly scalable end-to-end machine learning models and pipelines in Azure using TensorFlow, Spark, and Kubernetes

Key Features

Make sense of data on the cloud by implementing advanced analytics Train and optimize advanced deep learning models efficiently on Spark using Azure Databricks Deploy machine learning models for batch and real-time scoring with Azure Kubernetes Service (AKS)

Book DescriptionThe increase being seen in data volume today requires distributed systems, powerful algorithms, and scalable cloud infrastructure to compute insights and train and deploy machine learning (ML) models. This book will help you improve your knowledge of building ML models using Azure and end-to-end ML pipelines on the cloud.

The book starts with an overview of an end-to-end ML project and a guide on how to choose the right Azure service for different ML tasks. It then focuses on Azure Machine Learning and takes you through the process of data experimentation, data preparation, and feature engineering using Azure Machine Learning and Python. You’ll learn advanced feature extraction techniques using natural language processing (NLP), classical ML techniques, and the secrets of both a great recommendation engine and a performant computer vision model using deep learning methods. You’ll also explore how to train, optimize, and tune models using Azure Automated Machine Learning and HyperDrive, and perform distributed training on Azure. Then, you’ll learn different deployment and monitoring techniques using Azure Kubernetes Services with Azure Machine Learning, along with the basics of MLOps-DevOps for ML to automate your ML process as CI/CD pipeline.

By the end of this book, you’ll have mastered Azure Machine Learning and be able to confidently design, build and operate scalable ML pipelines in Azure.

What you will learn

Setup your Azure Machine Learning workspace for data experimentation and visualization Perform ETL, data preparation, and feature extraction using Azure best practices Implement advanced feature extraction using NLP and word embeddings Train gradient boosted tree-ensembles, recommendation engines and deep neural networks on Azure Machine Learning Use hyperparameter tuning and Azure Automated Machine Learning to optimize your ML models Employ distributed ML on GPU clusters using Horovod in Azure Machine Learning Deploy, operate and manage your ML models at scale Automated your end-to-end ML process as CI/CD pipelines for MLOps

Who this book is forThis machine learning book is for data professionals, data analysts, data engineers, data scientists, or machine learning developers who want to master scalable cloud-based machine learning architectures in Azure. This book will help you use advanced Azure services to build intelligent machine learning applications. A basic understanding of Python and working knowledge of machine learning are mandatory.

Read More
Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Date
30 April 2020
Pages
436
ISBN
9781789807554