Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Your hands-on reference guide to developing, training, and optimizing your machine learning models
Key Features
Your guide to learning efficient machine learning processes from scratch Explore expert techniques and hacks for a variety of machine learning concepts Write effective code in R, Python, Scala, and Spark to solve all your machine learning problems
Book DescriptionMachine learning makes it possible to learn about the unknowns and gain hidden insights into your datasets by mastering many tools and techniques. This book guides you to do just that in a very compact manner.
After giving a quick overview of what machine learning is all about, Machine Learning Quick Reference jumps right into its core algorithms and demonstrates how they can be applied to real-world scenarios. From model evaluation to optimizing their performance, this book will introduce you to the best practices in machine learning. Furthermore, you will also look at the more advanced aspects such as training neural networks and work with different kinds of data, such as text, time-series, and sequential data. Advanced methods and techniques such as causal inference, deep Gaussian processes, and more are also covered.
By the end of this book, you will be able to train fast, accurate machine learning models at your fingertips, which you can easily use as a point of reference.
What you will learn
Get a quick rundown of model selection, statistical modeling, and cross-validation Choose the best machine learning algorithm to solve your problem Explore kernel learning, neural networks, and time-series analysis Train deep learning models and optimize them for maximum performance Briefly cover Bayesian techniques and sentiment analysis in your NLP solution Implement probabilistic graphical models and causal inferences Measure and optimize the performance of your machine learning models
Who this book is forIf you’re a machine learning practitioner, data scientist, machine learning developer, or engineer, this book will serve as a reference point in building machine learning solutions. You will also find this book useful if you’re an intermediate machine learning developer or data scientist looking for a quick, handy reference to all the concepts of machine learning. You’ll need some exposure to machine learning to get the best out of this book.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Your hands-on reference guide to developing, training, and optimizing your machine learning models
Key Features
Your guide to learning efficient machine learning processes from scratch Explore expert techniques and hacks for a variety of machine learning concepts Write effective code in R, Python, Scala, and Spark to solve all your machine learning problems
Book DescriptionMachine learning makes it possible to learn about the unknowns and gain hidden insights into your datasets by mastering many tools and techniques. This book guides you to do just that in a very compact manner.
After giving a quick overview of what machine learning is all about, Machine Learning Quick Reference jumps right into its core algorithms and demonstrates how they can be applied to real-world scenarios. From model evaluation to optimizing their performance, this book will introduce you to the best practices in machine learning. Furthermore, you will also look at the more advanced aspects such as training neural networks and work with different kinds of data, such as text, time-series, and sequential data. Advanced methods and techniques such as causal inference, deep Gaussian processes, and more are also covered.
By the end of this book, you will be able to train fast, accurate machine learning models at your fingertips, which you can easily use as a point of reference.
What you will learn
Get a quick rundown of model selection, statistical modeling, and cross-validation Choose the best machine learning algorithm to solve your problem Explore kernel learning, neural networks, and time-series analysis Train deep learning models and optimize them for maximum performance Briefly cover Bayesian techniques and sentiment analysis in your NLP solution Implement probabilistic graphical models and causal inferences Measure and optimize the performance of your machine learning models
Who this book is forIf you’re a machine learning practitioner, data scientist, machine learning developer, or engineer, this book will serve as a reference point in building machine learning solutions. You will also find this book useful if you’re an intermediate machine learning developer or data scientist looking for a quick, handy reference to all the concepts of machine learning. You’ll need some exposure to machine learning to get the best out of this book.