Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Apache Spark 2.x Cookbook
Paperback

Apache Spark 2.x Cookbook

$129.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Over 70 recipes to help you use Apache Spark as your single big data computing platform and master its libraries

About This Book

* This book contains recipes on how to use Apache Spark as a unified compute engine * Cover how to connect various source systems to Apache Spark * Covers various parts of machine learning including supervised/unsupervised learning & recommendation engines

Who This Book Is For

This book is for data engineers, data scientists, and those who want to implement Spark for real-time data processing. Anyone who is using Spark (or is planning to) will benefit from this book. The book assumes you have a basic knowledge of Scala as a programming language.

What You Will Learn

* Install and configure Apache Spark with various cluster managers & on AWS * Set up a development environment for Apache Spark including Databricks Cloud notebook * Find out how to operate on data in Spark with schemas * Get to grips with real-time streaming analytics using Spark Streaming & Structured Streaming * Master supervised learning and unsupervised learning using MLlib * Build a recommendation engine using MLlib * Graph processing using GraphX and GraphFrames libraries * Develop a set of common applications or project types, and solutions that solve complex big data problems

In Detail

While Apache Spark 1.x gained a lot of traction and adoption in the early years, Spark 2.x delivers notable improvements in the areas of API, schema awareness, Performance, Structured Streaming, and simplifying building blocks to build better, faster, smarter, and more accessible big data applications. This book uncovers all these features in the form of structured recipes to analyze and mature large and complex sets of data. Starting with installing and configuring Apache Spark with various cluster managers, you will learn to set up development environments. Further on, you will be introduced to working with RDDs, DataFrames and Datasets to operate on schema aware data, and real-time streaming with various sources such as Twitter Stream and Apache Kafka. You will also work through recipes on machine learning, including supervised learning, unsupervised learning & recommendation engines in Spark. Last but not least, the final few chapters delve deeper into the concepts of graph processing using GraphX, securing your implementations, cluster optimization, and troubleshooting.

Style and approach

This book is packed with intuitive recipes supported with line-by-line explanations to help you understand Spark 2.x’s real-time processing capabilities and deploy scalable big data solutions. This is a valuable resource for data scientists and those working on large-scale data projects.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Date
31 May 2017
Pages
294
ISBN
9781787127265

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Over 70 recipes to help you use Apache Spark as your single big data computing platform and master its libraries

About This Book

* This book contains recipes on how to use Apache Spark as a unified compute engine * Cover how to connect various source systems to Apache Spark * Covers various parts of machine learning including supervised/unsupervised learning & recommendation engines

Who This Book Is For

This book is for data engineers, data scientists, and those who want to implement Spark for real-time data processing. Anyone who is using Spark (or is planning to) will benefit from this book. The book assumes you have a basic knowledge of Scala as a programming language.

What You Will Learn

* Install and configure Apache Spark with various cluster managers & on AWS * Set up a development environment for Apache Spark including Databricks Cloud notebook * Find out how to operate on data in Spark with schemas * Get to grips with real-time streaming analytics using Spark Streaming & Structured Streaming * Master supervised learning and unsupervised learning using MLlib * Build a recommendation engine using MLlib * Graph processing using GraphX and GraphFrames libraries * Develop a set of common applications or project types, and solutions that solve complex big data problems

In Detail

While Apache Spark 1.x gained a lot of traction and adoption in the early years, Spark 2.x delivers notable improvements in the areas of API, schema awareness, Performance, Structured Streaming, and simplifying building blocks to build better, faster, smarter, and more accessible big data applications. This book uncovers all these features in the form of structured recipes to analyze and mature large and complex sets of data. Starting with installing and configuring Apache Spark with various cluster managers, you will learn to set up development environments. Further on, you will be introduced to working with RDDs, DataFrames and Datasets to operate on schema aware data, and real-time streaming with various sources such as Twitter Stream and Apache Kafka. You will also work through recipes on machine learning, including supervised learning, unsupervised learning & recommendation engines in Spark. Last but not least, the final few chapters delve deeper into the concepts of graph processing using GraphX, securing your implementations, cluster optimization, and troubleshooting.

Style and approach

This book is packed with intuitive recipes supported with line-by-line explanations to help you understand Spark 2.x’s real-time processing capabilities and deploy scalable big data solutions. This is a valuable resource for data scientists and those working on large-scale data projects.

Read More
Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Date
31 May 2017
Pages
294
ISBN
9781787127265