Mastering .NET Machine Learning

Jamie Dixon

Mastering .NET Machine Learning
Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Published
29 March 2016
Pages
358
ISBN
9781785888403

Mastering .NET Machine Learning

Jamie Dixon

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Master the art of machine learning with .NET and gain insight into real-world applications

About This Book

* Based on .NET framework 4.6.1, includes examples on ASP.NET Core 1.0 * Set up your business application to start using machine learning techniques * Familiarize the user with some of the more common .NET libraries for machine learning * Implement several common machine learning techniques * Evaluate, optimize and adjust machine learning models

Who This Book Is For

This book is targeted at .Net developers who want to build complex machine learning systems. Some basic understanding of data science is required.

What You Will Learn

* Write your own machine learning applications and experiments using the latest .NET framework, including .NET Core 1.0 * Set up your business application to start using machine learning. * Accurately predict the future using regressions. * Discover hidden patterns using decision trees. * Acquire, prepare, and combine datasets to drive insights. * Optimize business throughput using Bayes Classifier. * Discover (more) hidden patterns using KNN and Naive Bayes. * Discover (even more) hidden patterns using K-Means and PCA. * Use Neural Networks to improve business decision making while using the latest ASP.NET technologies. * Explore Big Data , distributed computing, and how to deploy machine learning models to IoT devices - making machines self-learning and adapting * Along the way, learn about Open Data, Bing maps, and MBrace

In Detail

.Net is one of the widely used platforms for developing applications. With the meteoric rise of Machine learning, developers are now keen on finding out how can they make their .Net applications smarter. Also, .NET developers are interested into moving into the world of devices and how to apply machine learning techniques to, well, machines. This book is packed with real-world examples to easily use machine learning techniques in your business applications. You will begin with introduction to F# and prepare yourselves for machine learning using .NET framework. You will be writing a simple linear regression model using an example which predicts sales of a product. Forming a base with the regression model, you will start using machine learning libraries available in .NET framework such as Math.NET, Numl.NET and Accord.NET with the help of a sample application. You will then move on to writing multiple linear regressions and logistic regressions. You will learn what is open data and the awesomeness of type providers. Next, you are going to address some of the issues that we have been glossing over so far and take a deep dive into obtaining, cleaning, and organizing our data. You will compare the utility of building a KNN and Naive Bayes model to achieve best possible results. Implementation of Kmeans and PCA using Accord.NET and Numl.NET libraries is covered with the help of an example application. We will then look at many of issues confronting creating real-world machine learning models like overfitting and how to combat them using confusion matrixes, scaling, normalization, and feature selection. You will now enter into the world of Neural Networks and move your line of business application to a hybrid scientific application. After you have covered all the above machine learning models, you will see how to deal with very large datasets using MBrace and how to deploy machine learning models to Internet of Thing (IoT) devices so that the machine can learn and adapt on the fly.

Style and approach

This book will guide you in learning everything about how to tackle the flood of data being encountered these days in your .NET applications with the help of popular machine learning libraries offered by the .NET framework.

This item is not currently in-stock. It can be ordered online and is expected to ship in 7-14 days

Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.

Sign in or become a Readings Member to add this title to a wishlist.