Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Data Science Fundamentals: Pocket Primer
Paperback

Data Science Fundamentals: Pocket Primer

$156.99
Sign in or become a Readings Member to add this title to your wishlist.

As part of the best-selling Pocket Primer Series, this book is designed to introduce the reader to the basic concepts of data science using Python 3 and other computer applications. It is intended to be a fast-paced introduction to some basic features of data analytics and also covers statistics, data visualization, linear algebra, and regular expressions. The book includes numerous code samples using Python, NumPy, R, SQL, NoSQL, and Pandas. Companion files with source code and color figures are available.

FEATURES:

Includes a concise introduction to Python 3 and linear algebra Provides a thorough introduction to data visualization and regular expressions Covers NumPy, Pandas, R, and SQL Introduces probability and statistical concepts Features numerous code samples throughout
Includes companion files with source code and figures

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Mercury Learning & Information
Country
United States
Date
25 May 2021
Pages
450
ISBN
9781683927334

As part of the best-selling Pocket Primer Series, this book is designed to introduce the reader to the basic concepts of data science using Python 3 and other computer applications. It is intended to be a fast-paced introduction to some basic features of data analytics and also covers statistics, data visualization, linear algebra, and regular expressions. The book includes numerous code samples using Python, NumPy, R, SQL, NoSQL, and Pandas. Companion files with source code and color figures are available.

FEATURES:

Includes a concise introduction to Python 3 and linear algebra Provides a thorough introduction to data visualization and regular expressions Covers NumPy, Pandas, R, and SQL Introduces probability and statistical concepts Features numerous code samples throughout
Includes companion files with source code and figures

Read More
Format
Paperback
Publisher
Mercury Learning & Information
Country
United States
Date
25 May 2021
Pages
450
ISBN
9781683927334