Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
One-shot channel simulation, or channel synthesis, has seen increasing applications in lossy compression, differential privacy and machine learning. In this setting, an encoder observes a source X, and transmits a description to a decoder, so as to allow it to produce an output Y with a desired conditional distribution PY|X. In other words, the encoder and the decoder are simulating the noisy channel PY|X using noiseless communication. This can also be seen as a lossy compression scheme with a stronger guarantee on the joint distribution of X and Y. This monograph gives an overview of the theory and applications of the channel simulation problem. A unifying review of various one-shot and asymptotic channel simulation techniques that have been proposed in different areas are presented, namely dithered quantization, rejection sampling, minimal random coding, likelihood encoder, soft covering, Poisson functional representation, and dyadic decomposition.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
One-shot channel simulation, or channel synthesis, has seen increasing applications in lossy compression, differential privacy and machine learning. In this setting, an encoder observes a source X, and transmits a description to a decoder, so as to allow it to produce an output Y with a desired conditional distribution PY|X. In other words, the encoder and the decoder are simulating the noisy channel PY|X using noiseless communication. This can also be seen as a lossy compression scheme with a stronger guarantee on the joint distribution of X and Y. This monograph gives an overview of the theory and applications of the channel simulation problem. A unifying review of various one-shot and asymptotic channel simulation techniques that have been proposed in different areas are presented, namely dithered quantization, rejection sampling, minimal random coding, likelihood encoder, soft covering, Poisson functional representation, and dyadic decomposition.