Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Numerical Methods for Convex Multistage Stochastic Optimization
Paperback

Numerical Methods for Convex Multistage Stochastic Optimization

$125.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Optimization problems involving sequential decisions in a stochastic environment were studied in Stochastic Programming (SP), Stochastic Optimal Control (SOC) and Markov Decision Processes (MDP). This monograph concentrates on SP and SOC modeling approaches. In these frameworks, there are natural situations when the considered problems are convex. The classical approach to sequential optimization is based on dynamic programming. It has the problem of the so-called "curse of dimensionality", in that its computational complexity increases exponentially with respect to the dimension of state variables.

Recent progress in solving convex multistage stochastic problems is based on cutting plane approximations of the cost-to-go (value) functions of dynamic programming equations. Cutting plane type algorithms in dynamical settings is one of the main topics of this monograph. Also discussed in this work are stochastic approximation type methods applied to multistage stochastic optimization problems. From the computational complexity point of view, these two types of methods seem to be complimentary to each other. Cutting plane type methods can handle multistage problems with a large number of stages but a relatively smaller number of state (decision) variables. On the other hand, stochastic approximation type methods can only deal with a small number of stages but a large number of decision variables.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
now publishers Inc
Country
United States
Date
22 May 2024
Pages
94
ISBN
9781638283508

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Optimization problems involving sequential decisions in a stochastic environment were studied in Stochastic Programming (SP), Stochastic Optimal Control (SOC) and Markov Decision Processes (MDP). This monograph concentrates on SP and SOC modeling approaches. In these frameworks, there are natural situations when the considered problems are convex. The classical approach to sequential optimization is based on dynamic programming. It has the problem of the so-called "curse of dimensionality", in that its computational complexity increases exponentially with respect to the dimension of state variables.

Recent progress in solving convex multistage stochastic problems is based on cutting plane approximations of the cost-to-go (value) functions of dynamic programming equations. Cutting plane type algorithms in dynamical settings is one of the main topics of this monograph. Also discussed in this work are stochastic approximation type methods applied to multistage stochastic optimization problems. From the computational complexity point of view, these two types of methods seem to be complimentary to each other. Cutting plane type methods can handle multistage problems with a large number of stages but a relatively smaller number of state (decision) variables. On the other hand, stochastic approximation type methods can only deal with a small number of stages but a large number of decision variables.

Read More
Format
Paperback
Publisher
now publishers Inc
Country
United States
Date
22 May 2024
Pages
94
ISBN
9781638283508