Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

A Tutorial on Hadamard Semidifferentials
Paperback

A Tutorial on Hadamard Semidifferentials

$107.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This tutorial presents a brief survey of semidifferentials in the familiar context of finite-dimensional Euclidean space. This restriction exposes the most critical ideas, important connections to convexity and optimization, and a few novel applications. The text delves more deeply into these topics and is highly recommended for a systematic course and self-study.

The main focus of this tutorial is on Hadamard semidifferentials. The Hadamard semidifferential is more general than the Frechet differential, which is now dominant in undergraduate mathematics education. By slightly changing the definition of the forward directional derivative, the Hadamard semidifferential rescues the chain rule, enforces continuity, and permits differentiation across maxima and minima.

The Hadamard semidifferential also plays well with convex analysis and naturally extends differentiation to smooth embedded submanifolds, topological vector spaces, and metric spaces of shapes and geometries. The current elementary exposition focuses on the more familiar territory of analysis in Euclidean spaces and applies the semidifferential to some representative problems in optimization and statistics. These include algorithms for proximal gradient descent, steepest descent in matrix completion, and variance components models.

This tutorial will be of interest to students in advanced undergraduate and beginning graduate courses in the mathematical sciences.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
now publishers Inc
Country
United States
Date
13 May 2024
Pages
78
ISBN
9781638283485

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This tutorial presents a brief survey of semidifferentials in the familiar context of finite-dimensional Euclidean space. This restriction exposes the most critical ideas, important connections to convexity and optimization, and a few novel applications. The text delves more deeply into these topics and is highly recommended for a systematic course and self-study.

The main focus of this tutorial is on Hadamard semidifferentials. The Hadamard semidifferential is more general than the Frechet differential, which is now dominant in undergraduate mathematics education. By slightly changing the definition of the forward directional derivative, the Hadamard semidifferential rescues the chain rule, enforces continuity, and permits differentiation across maxima and minima.

The Hadamard semidifferential also plays well with convex analysis and naturally extends differentiation to smooth embedded submanifolds, topological vector spaces, and metric spaces of shapes and geometries. The current elementary exposition focuses on the more familiar territory of analysis in Euclidean spaces and applies the semidifferential to some representative problems in optimization and statistics. These include algorithms for proximal gradient descent, steepest descent in matrix completion, and variance components models.

This tutorial will be of interest to students in advanced undergraduate and beginning graduate courses in the mathematical sciences.

Read More
Format
Paperback
Publisher
now publishers Inc
Country
United States
Date
13 May 2024
Pages
78
ISBN
9781638283485