Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Sixth-generation (6G) wireless communication networks will transform connected things in 5G into connected intelligence. The networks can have human-like cognition capabilities by enabling many potential services, such as high-accuracy localization and tracking, augmented human sense, gesture and activity recognition, etc. For this purpose, many emerging applications in 6G have stringent requirements on transmission throughput and latency. With the explosion of devices in the connected intelligence world, spectrum utilization has to be enhanced to meet these stringent requirements. In-band full-duplex has been reported as a promising technique to enhance spectral efficiency and reduce end-to-end latency. However, simultaneous transmission and reception over the same frequency introduce additional interference compared to conventional half-duplex radios. The receiver is exposed to the transmitter of the same node operating in in-band full-duplex mode, causing self-interference. Due to the significant power difference between self-interference and the signal of interest, self-interference must be effectively suppressed to benefit from in-band full-duplex operation. In addition to self-interference, uplink users will interfere with downlink users within the range, known as co-channel interference. This interference could be significant in cellular networks, so it has to be appropriately processed to maximize the in-band full-duplex gain.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Sixth-generation (6G) wireless communication networks will transform connected things in 5G into connected intelligence. The networks can have human-like cognition capabilities by enabling many potential services, such as high-accuracy localization and tracking, augmented human sense, gesture and activity recognition, etc. For this purpose, many emerging applications in 6G have stringent requirements on transmission throughput and latency. With the explosion of devices in the connected intelligence world, spectrum utilization has to be enhanced to meet these stringent requirements. In-band full-duplex has been reported as a promising technique to enhance spectral efficiency and reduce end-to-end latency. However, simultaneous transmission and reception over the same frequency introduce additional interference compared to conventional half-duplex radios. The receiver is exposed to the transmitter of the same node operating in in-band full-duplex mode, causing self-interference. Due to the significant power difference between self-interference and the signal of interest, self-interference must be effectively suppressed to benefit from in-band full-duplex operation. In addition to self-interference, uplink users will interfere with downlink users within the range, known as co-channel interference. This interference could be significant in cellular networks, so it has to be appropriately processed to maximize the in-band full-duplex gain.