Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This monograph deals with principal component analysis (PCA), kernel component analysis (KPCA), and independent component analysis (ICA), highlighting their applications to streaming-data implementations.
The basic concepts related to PCA, KPCA, and ICA are widely available in the literature; however, very few texts deal with their practical implementation in computationally limited resources. This monograph discusses the state-of-the-art online PCA and KPCA techniques in a unified and principled manner, presenting solutions that achieve a higher convergence speed and accuracy in many applications, particularly image processing. Besides, this work also explains how to remove various artifacts from data records based on blind source separation by independent component analysis implemented with ICA, splitting feature identification from feature separation. Herein, three FastICA online hardware architectures and implementation for biomedical signal processing are addressed. The main features are summarized as follows: 1) energy-efficient FastICA using the proposed early determination scheme; 2) cost-effective variable-channel FastICA using the Gram-Schmidt-based whitening algorithm; and 3) moving-window-based online FastICA algorithm with limited memory. The post-layout simulation results with artificial and EEG data validate the design concepts.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This monograph deals with principal component analysis (PCA), kernel component analysis (KPCA), and independent component analysis (ICA), highlighting their applications to streaming-data implementations.
The basic concepts related to PCA, KPCA, and ICA are widely available in the literature; however, very few texts deal with their practical implementation in computationally limited resources. This monograph discusses the state-of-the-art online PCA and KPCA techniques in a unified and principled manner, presenting solutions that achieve a higher convergence speed and accuracy in many applications, particularly image processing. Besides, this work also explains how to remove various artifacts from data records based on blind source separation by independent component analysis implemented with ICA, splitting feature identification from feature separation. Herein, three FastICA online hardware architectures and implementation for biomedical signal processing are addressed. The main features are summarized as follows: 1) energy-efficient FastICA using the proposed early determination scheme; 2) cost-effective variable-channel FastICA using the Gram-Schmidt-based whitening algorithm; and 3) moving-window-based online FastICA algorithm with limited memory. The post-layout simulation results with artificial and EEG data validate the design concepts.