Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Control of Breathing During Exercise
Paperback

Control of Breathing During Exercise

$217.99
Sign in or become a Readings Member to add this title to your wishlist.

The control of breathing during exercise remains the source of considerable debate. Classical schemes of the exercise hyperpnea have incorporated elements of proportional feed-back from chemoreceptor sites (carotid body and brainstem) and feed-forward neurogenic (central command and muscle reflex) control. However, the precise details of the control process are still not fully resolved, reflecting in part technical and interpretational limitations inherent in isolating putative control mechanisms in the intact exercising human and also the challenges presented by the ventilatory and gas-exchange complexities encountered at work rates which engender a metabolic (lactic) acidosis. Although some combination of neurogenic, chemoreflex, and circulatory-coupled processes are likely to contribute to the control, intriguingly, the overall system appears to evidence considerable redundancy. This, coupled with the lack of appreciable steady-state error signals in the mean levels of arterial PCO2, PO2, and pH over a wide range of work rates, has motivated the formulation of innovative control models that reflect not only spatial interactions but also temporal interactions (i.e., short-term and longer-term ‘memory’). The challenge remains to discriminate between robust control schemes that (a) integrate such processes within plausible physiological equivalents, and (b) account for both the dynamic and steady-state system response over the entire range of exercise intensities.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Morgan & Claypool Publishers
Country
United States
Date
1 July 2014
Pages
93
ISBN
9781615043729

The control of breathing during exercise remains the source of considerable debate. Classical schemes of the exercise hyperpnea have incorporated elements of proportional feed-back from chemoreceptor sites (carotid body and brainstem) and feed-forward neurogenic (central command and muscle reflex) control. However, the precise details of the control process are still not fully resolved, reflecting in part technical and interpretational limitations inherent in isolating putative control mechanisms in the intact exercising human and also the challenges presented by the ventilatory and gas-exchange complexities encountered at work rates which engender a metabolic (lactic) acidosis. Although some combination of neurogenic, chemoreflex, and circulatory-coupled processes are likely to contribute to the control, intriguingly, the overall system appears to evidence considerable redundancy. This, coupled with the lack of appreciable steady-state error signals in the mean levels of arterial PCO2, PO2, and pH over a wide range of work rates, has motivated the formulation of innovative control models that reflect not only spatial interactions but also temporal interactions (i.e., short-term and longer-term ‘memory’). The challenge remains to discriminate between robust control schemes that (a) integrate such processes within plausible physiological equivalents, and (b) account for both the dynamic and steady-state system response over the entire range of exercise intensities.

Read More
Format
Paperback
Publisher
Morgan & Claypool Publishers
Country
United States
Date
1 July 2014
Pages
93
ISBN
9781615043729