Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Sparse Polynomial Approximation of High-Dimensional Functions
Paperback

Sparse Polynomial Approximation of High-Dimensional Functions

$429.99
Sign in or become a Readings Member to add this title to your wishlist.

Over seventy years ago, Richard Bellman coined the term the curse of dimensionality to describe phenomena and computational challenges that arise in high dimensions. These challenges, in tandem with the ubiquity of high-dimensional functions in real-world applications, have led to a lengthy, focused research effort on high-dimensional approximation-that is, the development of methods for approximating functions of many variables accurately and efficiently from data.

This book provides an in-depth treatment of one of the latest installments in this long and ongoing story: sparse polynomial approximation methods. These methods have emerged as useful tools for various high-dimensional approximation tasks arising in a range of applications in computational science and engineering. It begins with a comprehensive overview of best s-term polynomial approximation theory for holomorphic, high-dimensional functions, as well as a detailed survey of applications to parametric differential equations. It then describes methods for computing sparse polynomial approximations, focusing on least squares and compressed sensing techniques.

Sparse Polynomial Approximation of High-Dimensional Functions presents the first comprehensive and unified treatment of polynomial approximation techniques that can mitigate the curse of dimensionality in high-dimensional approximation, including least squares and compressed sensing. It develops main concepts in a mathematically rigorous manner, with full proofs given wherever possible, and it contains many numerical examples, each accompanied by downloadable code. The authors provide an extensive bibliography of over 350 relevant references, with an additional annotated bibliography available on the book’s companion website (www.sparse-hd-book.com).

This text is aimed at graduate students, postdoctoral fellows, and researchers in mathematics, computer science, and engineering who are interested in high-dimensional polynomial approximation techniques.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Society for Industrial & Applied Mathematics,U.S.
Country
United States
Date
1 December 2021
Pages
292
ISBN
9781611976878

Over seventy years ago, Richard Bellman coined the term the curse of dimensionality to describe phenomena and computational challenges that arise in high dimensions. These challenges, in tandem with the ubiquity of high-dimensional functions in real-world applications, have led to a lengthy, focused research effort on high-dimensional approximation-that is, the development of methods for approximating functions of many variables accurately and efficiently from data.

This book provides an in-depth treatment of one of the latest installments in this long and ongoing story: sparse polynomial approximation methods. These methods have emerged as useful tools for various high-dimensional approximation tasks arising in a range of applications in computational science and engineering. It begins with a comprehensive overview of best s-term polynomial approximation theory for holomorphic, high-dimensional functions, as well as a detailed survey of applications to parametric differential equations. It then describes methods for computing sparse polynomial approximations, focusing on least squares and compressed sensing techniques.

Sparse Polynomial Approximation of High-Dimensional Functions presents the first comprehensive and unified treatment of polynomial approximation techniques that can mitigate the curse of dimensionality in high-dimensional approximation, including least squares and compressed sensing. It develops main concepts in a mathematically rigorous manner, with full proofs given wherever possible, and it contains many numerical examples, each accompanied by downloadable code. The authors provide an extensive bibliography of over 350 relevant references, with an additional annotated bibliography available on the book’s companion website (www.sparse-hd-book.com).

This text is aimed at graduate students, postdoctoral fellows, and researchers in mathematics, computer science, and engineering who are interested in high-dimensional polynomial approximation techniques.

Read More
Format
Paperback
Publisher
Society for Industrial & Applied Mathematics,U.S.
Country
United States
Date
1 December 2021
Pages
292
ISBN
9781611976878