Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
The need to quantify and characterise uncertainties arising in mathematical models with unknown parameters leads to the rapidly evolving field of uncertainty quantification. This book provides readers with the concepts, theory, and algorithms necessary to quantify input and response uncertainties for simulation models. It covers concepts from probability and statistics such as parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, and sensitivity analysis. The book goes on to explore applications and open problems from a wide array of disciplines, particularly those such as climate science, hydrology, and nuclear power where uncertainty quantification is crucial for both scientific understanding and public policy. An accompanying web page provides data used in the exercises and other supplementary material. The text is intended as a coursebook for advanced undergraduates and above, and as a resource for researchers in mathematics, statistics, operations research, science, and engineering.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
The need to quantify and characterise uncertainties arising in mathematical models with unknown parameters leads to the rapidly evolving field of uncertainty quantification. This book provides readers with the concepts, theory, and algorithms necessary to quantify input and response uncertainties for simulation models. It covers concepts from probability and statistics such as parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, and sensitivity analysis. The book goes on to explore applications and open problems from a wide array of disciplines, particularly those such as climate science, hydrology, and nuclear power where uncertainty quantification is crucial for both scientific understanding and public policy. An accompanying web page provides data used in the exercises and other supplementary material. The text is intended as a coursebook for advanced undergraduates and above, and as a resource for researchers in mathematics, statistics, operations research, science, and engineering.