Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Detector materials include semiconductors and scintillators, which are represented by a variety of binary molecular compounds such as lanthanum halides (LaX3), zinc oxide (ZnO) and mercuric iodide (HgI2). Ideally, these materials possess appropriate range bandgaps, high atomic numbers of the central element and high densities. They also perform at room temperature, have strong mechanical properties and low production costs. There are significant gaps, however, in the information needed to improve the quality of these materials - in terms of reproducible purity, homogeneity and mechanical integrity. This book features the latest advances in radiation detection materials, both from experimental and theoretical standpoints, as both are needed to grow and characterize materials that will produce enhanced detectors of the future. Topics include: CdTe and CdZnTe detectors; neutron detectors and scintillators.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Detector materials include semiconductors and scintillators, which are represented by a variety of binary molecular compounds such as lanthanum halides (LaX3), zinc oxide (ZnO) and mercuric iodide (HgI2). Ideally, these materials possess appropriate range bandgaps, high atomic numbers of the central element and high densities. They also perform at room temperature, have strong mechanical properties and low production costs. There are significant gaps, however, in the information needed to improve the quality of these materials - in terms of reproducible purity, homogeneity and mechanical integrity. This book features the latest advances in radiation detection materials, both from experimental and theoretical standpoints, as both are needed to grow and characterize materials that will produce enhanced detectors of the future. Topics include: CdTe and CdZnTe detectors; neutron detectors and scintillators.