Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Lx = b
Paperback

Lx = b

$275.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The ability to solve a system of linear equations lies at the heart of areas like optimization, scientific computing, and computer science and has traditionally been a central topic of research in the area of numerical linear algebra. An important class of instances that arise in practice has the form Lx=b where L is the Laplacian of an undirected graph. After decades of sustained research and combining tools from disparate areas, we now have Laplacian solvers that run in time nearly-linear in the sparsity of the system, which is a distant goal for general systems. Surprisingly, Laplacian solvers are impacting the theory of fast algorithms for fundamental graph problems.

In this monograph, the emerging paradigm of employing Laplacian solvers to design novel fast algorithms for graph problems is illustrated through a small but carefully chosen set of examples. A significant part of this monograph is also dedicated to developing the ideas that go into the construction of near-linear time Laplacian solvers. An understanding of these methods, which marry techniques from linear algebra and graph theory, will not only enrich the tool-set of an algorithm designer but will also provide the ability to adapt these methods to design fast algorithms for other fundamental problems.

This monograph can be used as the text for a graduate-level course, or act as a supplement to a course on spectral graph theory or algorithms. The writing style, which deliberately emphasizes the presentation of key ideas over rigor, will make it accessible to advanced undergraduates.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
now publishers Inc
Country
United States
Date
23 May 2013
Pages
168
ISBN
9781601989468

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The ability to solve a system of linear equations lies at the heart of areas like optimization, scientific computing, and computer science and has traditionally been a central topic of research in the area of numerical linear algebra. An important class of instances that arise in practice has the form Lx=b where L is the Laplacian of an undirected graph. After decades of sustained research and combining tools from disparate areas, we now have Laplacian solvers that run in time nearly-linear in the sparsity of the system, which is a distant goal for general systems. Surprisingly, Laplacian solvers are impacting the theory of fast algorithms for fundamental graph problems.

In this monograph, the emerging paradigm of employing Laplacian solvers to design novel fast algorithms for graph problems is illustrated through a small but carefully chosen set of examples. A significant part of this monograph is also dedicated to developing the ideas that go into the construction of near-linear time Laplacian solvers. An understanding of these methods, which marry techniques from linear algebra and graph theory, will not only enrich the tool-set of an algorithm designer but will also provide the ability to adapt these methods to design fast algorithms for other fundamental problems.

This monograph can be used as the text for a graduate-level course, or act as a supplement to a course on spectral graph theory or algorithms. The writing style, which deliberately emphasizes the presentation of key ideas over rigor, will make it accessible to advanced undergraduates.

Read More
Format
Paperback
Publisher
now publishers Inc
Country
United States
Date
23 May 2013
Pages
168
ISBN
9781601989468