Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Where do robots get their information? For a given task, what information is actually necessary? What is even meant by
information ? These questions lie at the heart of robotics and fall under the realm of sensing and filtering.
In Sensing and Filtering, the author presents an unusual view of these subjects by characterizing the uncertainty due to the many-to-one mappings between the world and sensor readings. This is independent of noise-based uncertainty and reveals critical structure about the possible problems that can be solved using specific sensors. The set of all sensor models is arranged into a lattice that enables them to be compared for purposes of interchangeability.
Filters, which combine sensor observations, are expressed in terms of information states (not information theory), a concept that was introduced in decision and control theory. Sensing and Filtering provides the reader with modeling tools and concepts for developing robotic systems that accomplish their tasks while carefully avoiding the reconstruction of unnecessary state information. This is in contrast to the approach usually taken in planning and control, which is to fully reconstruct and maintain the state at all times. The new approach may enable simple, robust, and inexpensive solutions to tasks such as navigation, topological mapping, coverage, patrolling, tracking, and pursuit-evasion.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Where do robots get their information? For a given task, what information is actually necessary? What is even meant by
information ? These questions lie at the heart of robotics and fall under the realm of sensing and filtering.
In Sensing and Filtering, the author presents an unusual view of these subjects by characterizing the uncertainty due to the many-to-one mappings between the world and sensor readings. This is independent of noise-based uncertainty and reveals critical structure about the possible problems that can be solved using specific sensors. The set of all sensor models is arranged into a lattice that enables them to be compared for purposes of interchangeability.
Filters, which combine sensor observations, are expressed in terms of information states (not information theory), a concept that was introduced in decision and control theory. Sensing and Filtering provides the reader with modeling tools and concepts for developing robotic systems that accomplish their tasks while carefully avoiding the reconstruction of unnecessary state information. This is in contrast to the approach usually taken in planning and control, which is to fully reconstruct and maintain the state at all times. The new approach may enable simple, robust, and inexpensive solutions to tasks such as navigation, topological mapping, coverage, patrolling, tracking, and pursuit-evasion.