Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Learning Representation and Control in Markov Decision Processes: New Frontiers
Paperback

Learning Representation and Control in Markov Decision Processes: New Frontiers

$304.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Learning Representation and Control in Markov Decision Processes describes methods for automatically compressing Markov decision processes (MDPs) by learning a low-dimensional linear approximation defined by an orthogonal set of basis functions. A unique feature of the text is the use of Laplacian operators, whose matrix representations have non-positive off-diagonal elements and zero row sums. The generalized inverses of Laplacian operators, in particular the Drazin inverse, are shown to be useful in the exact and approximate solution of MDPs.

The author goes on to describe a broad framework for solving MDPs, generically referred to as representation policy iteration (RPI), where both the basis function representations for approximation of value functions as well as the optimal policy within their linear span are simultaneously learned. Basis functions are constructed by diagonalizing a Laplacian operator or by dilating the reward function or an initial set of bases by powers of the operator. The idea of decomposing an operator by finding its invariant subspaces is shown to be an important principle in constructing low-dimensional representations of MDPs. Theoretical properties of these approaches are discussed, and they are also compared experimentally on a variety of discrete and continuous MDPs. Finally, challenges for further research are briefly outlined.

This is a timely exposition of a topic with broad interest within machine learning and beyond.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
now publishers Inc
Country
United States
Date
2 June 2009
Pages
184
ISBN
9781601982384

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Learning Representation and Control in Markov Decision Processes describes methods for automatically compressing Markov decision processes (MDPs) by learning a low-dimensional linear approximation defined by an orthogonal set of basis functions. A unique feature of the text is the use of Laplacian operators, whose matrix representations have non-positive off-diagonal elements and zero row sums. The generalized inverses of Laplacian operators, in particular the Drazin inverse, are shown to be useful in the exact and approximate solution of MDPs.

The author goes on to describe a broad framework for solving MDPs, generically referred to as representation policy iteration (RPI), where both the basis function representations for approximation of value functions as well as the optimal policy within their linear span are simultaneously learned. Basis functions are constructed by diagonalizing a Laplacian operator or by dilating the reward function or an initial set of bases by powers of the operator. The idea of decomposing an operator by finding its invariant subspaces is shown to be an important principle in constructing low-dimensional representations of MDPs. Theoretical properties of these approaches are discussed, and they are also compared experimentally on a variety of discrete and continuous MDPs. Finally, challenges for further research are briefly outlined.

This is a timely exposition of a topic with broad interest within machine learning and beyond.

Read More
Format
Paperback
Publisher
now publishers Inc
Country
United States
Date
2 June 2009
Pages
184
ISBN
9781601982384