Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

The Many Facets of Cosmic Explosions
Paperback

The Many Facets of Cosmic Explosions

$60.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Over the past few years, long-duration gamma-ray bursts (GRBs), including the subclass of X-ray flashes (XRFs), have been revealed to be a rare variety of Type Ibc supernova (SN Ibc). While all these events result from the death of massive stars, the electromagnetic luminosities of GRBs and XRFs exceed those of ordinary Type Ibc SNe by many orders of magnitude. The observed diversity of stellar death corresponds to large variations in the energy, velocity, and geometry of the explosion ejecta. Using multi-wavelength (radio, optical, X-ray) observations of the nearest GRBs, XRFs, and SNe Ibc, I show that GRBs and XRFs couple at least 1048 erg to relativistic material while SNe Ibc typically couple less than 1048 erg to their fastest (albeit non-relativistic) outflows. Specifically, I find that less than 3 percent of local SNe Ibc show any evidence for association with a GRB or XRF. Interestingly, this dichotomy is not echoed by the properties of their optical SN emission, dominated by the radioactive decay of Nickel-56; I find that GRBs, XRFs, and SNe Ibc show significant overlap in their optical peak luminosity and photospheric velocities. Recently, I identified a new class of GRBs and XRFs that are under-luminous in comparison with the statistical sample of GRBs. Owing to their faint high-energy emission, these sub-energetic bursts are only detectable nearby (z

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Dissertation.com
Country
United States
Date
19 October 2007
Pages
268
ISBN
9781581123777

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Over the past few years, long-duration gamma-ray bursts (GRBs), including the subclass of X-ray flashes (XRFs), have been revealed to be a rare variety of Type Ibc supernova (SN Ibc). While all these events result from the death of massive stars, the electromagnetic luminosities of GRBs and XRFs exceed those of ordinary Type Ibc SNe by many orders of magnitude. The observed diversity of stellar death corresponds to large variations in the energy, velocity, and geometry of the explosion ejecta. Using multi-wavelength (radio, optical, X-ray) observations of the nearest GRBs, XRFs, and SNe Ibc, I show that GRBs and XRFs couple at least 1048 erg to relativistic material while SNe Ibc typically couple less than 1048 erg to their fastest (albeit non-relativistic) outflows. Specifically, I find that less than 3 percent of local SNe Ibc show any evidence for association with a GRB or XRF. Interestingly, this dichotomy is not echoed by the properties of their optical SN emission, dominated by the radioactive decay of Nickel-56; I find that GRBs, XRFs, and SNe Ibc show significant overlap in their optical peak luminosity and photospheric velocities. Recently, I identified a new class of GRBs and XRFs that are under-luminous in comparison with the statistical sample of GRBs. Owing to their faint high-energy emission, these sub-energetic bursts are only detectable nearby (z

Read More
Format
Paperback
Publisher
Dissertation.com
Country
United States
Date
19 October 2007
Pages
268
ISBN
9781581123777