New Methods in Financial Modeling: Explorations and Applications

Hugh Neuburger,Houston H. Stokes

New Methods in Financial Modeling: Explorations and Applications
Format
Hardback
Publisher
ABC-CLIO
Country
United States
Published
18 February 1998
Pages
168
ISBN
9781567201253

New Methods in Financial Modeling: Explorations and Applications

Hugh Neuburger,Houston H. Stokes

The authors present a number of financial market studies that have as their general theme, the econometric testing of the underlying econometric assumptions of a number of financial models. More than 30 years of financial market research has convinced the authors that not enough attention has been paid to whether the estimated model is appropriate or, most importantly, whether the estimation technique is suitable for the problem under study. For many years linear models have been assumed with little or no testing of alternative specification. The result has been models that force linearity assumptions on what clearly are nonlinear processes. Another major assumption of much financial research constrains the coefficients to be stable over time. This critical assumption has been attacked by Lucas (1976) on the grounds that when economic policy changes, the coefficients of macroeconomics models change. If this occurs, any policy forecasts of these models will be flawed. In financial modeling, omitted (possibly non-quantifiable) variables will bias coefficients. While it may be possible to model some financial variables for extended periods, in other periods the underlying models may either exhibit nonlinearity or show changes in linear models. The authors research indicates that tests for changes in linear models, such as recursive residual analysis, or tests for episodic nonlinearity can be used to signal changes in the underlying structure of the market.

The book begins with a brief review of basic linear time series techniques that include autoregressive integrated moving average models (ARIMA), vector autoregressive models (VAR), and models form the ARCH/GARCH class. While the ARIMA and VAR approach models the first moment of a series, models of the ARCH/GARCH class model both the first moment and second moment which is interpreted as conditional or explained volatility of a series. Recent work on nonlinearity detection has questioned the appropriateness of these essentially linear approaches. A number of such tests are shown and applied for the complete series and a subsets of the series. A major finding is that the structure of the series may change over time. Within the time frame of a study, there may be periods of episodic nonlinearity, episodic ARCH and episodic nonstationarity. Measures are developed to measure and relate these events both geographically and with mathematical models. This book will be of interest to applied finance researchers and to market participants.

This item is not currently in-stock. It can be ordered online and is expected to ship in approx 2 weeks

Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.

Sign in or become a Readings Member to add this title to a wishlist.