Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

 
Paperback

Optical Imaging of Cancer: Clinical Applications

$627.99
Sign in or become a Readings Member to add this title to your wishlist.

To describe principles of optical imaging including chemistry and physics of fluorescence, limitations/advantages of optical imaging compared to metabolic and anatomic imaging.

Describe hardware adapted for small animal imaging and for clinical applications: endoscopes and operative microscopes.

Outline FDA approved and newer optical imaging probes. Include discussion of chemistry and linkage to other proteins. Review current techniques to image cancer and the development of techniques to specifically image cancer cells.

Review use of exploiting differences in tissue autofluorescence to diagnose and treat cancer. Include agents such as 5-aminoleculinic acid.

Review mechanisms that require proteolytic processing within the tumor to become active fluorophores.

Review use of cancer selective proteins to localize probes to cancer cells: include toxins, antibodies, and minibodies.

Introduction of plasmids, viruses or other genetic material may be used to express fluorescent agents in vivo. This chapter will review multiple vectors and delivery mechanisms of optical imaging cassettes.Preclinical investigations into the use of optical contrast agents for the detection of primary tumors in conventional and orthotopic models will be discussed.

Preclinical investigations into the use of optical contrast agents for the detection of metastatic tumors in mouse models will be discussed.

Use of targeted and non-specific optical contrast agents have been used for the detection of sentinel lymph node detection. These applications and how they differ from other applications will be discussed.

Because of the unique difficulty of identifying tumor from normal tissue in brain tissue, a separate chapter would be needed. More clinical data is available for this cancer type than any other.

Discussion of potential clinical applications for optical imaging and an assessment of the potential market.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
23 August 2016
Pages
272
ISBN
9781493939329

To describe principles of optical imaging including chemistry and physics of fluorescence, limitations/advantages of optical imaging compared to metabolic and anatomic imaging.

Describe hardware adapted for small animal imaging and for clinical applications: endoscopes and operative microscopes.

Outline FDA approved and newer optical imaging probes. Include discussion of chemistry and linkage to other proteins. Review current techniques to image cancer and the development of techniques to specifically image cancer cells.

Review use of exploiting differences in tissue autofluorescence to diagnose and treat cancer. Include agents such as 5-aminoleculinic acid.

Review mechanisms that require proteolytic processing within the tumor to become active fluorophores.

Review use of cancer selective proteins to localize probes to cancer cells: include toxins, antibodies, and minibodies.

Introduction of plasmids, viruses or other genetic material may be used to express fluorescent agents in vivo. This chapter will review multiple vectors and delivery mechanisms of optical imaging cassettes.Preclinical investigations into the use of optical contrast agents for the detection of primary tumors in conventional and orthotopic models will be discussed.

Preclinical investigations into the use of optical contrast agents for the detection of metastatic tumors in mouse models will be discussed.

Use of targeted and non-specific optical contrast agents have been used for the detection of sentinel lymph node detection. These applications and how they differ from other applications will be discussed.

Because of the unique difficulty of identifying tumor from normal tissue in brain tissue, a separate chapter would be needed. More clinical data is available for this cancer type than any other.

Discussion of potential clinical applications for optical imaging and an assessment of the potential market.

Read More
Format
Paperback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
23 August 2016
Pages
272
ISBN
9781493939329