Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Time Series Databases - New Ways to Store and Acces Data
Paperback

Time Series Databases - New Ways to Store and Acces Data

$86.99
Sign in or become a Readings Member to add this title to your wishlist.

Time series data is of growing importance, especially with the rapid expansion of the Internet of Things. This concise guide shows you effective ways to collect, persist, and access large-scale time series data for analysis. You’ll explore the theory behind time series databases and learn practical methods for implementing them. Authors Ted Dunning and Ellen Friedman provide a detailed examination of open source tools such as OpenTSDB and new modifications that greatly speed up data ingestion.

You’ll learn:

A variety of time series use cases The advantages of NoSQL databases for large-scale time series data NoSQL table design for high-performance time series databases The benefits and limitations of OpenTSDB How to access data in OpenTSDB using R, Go, and Ruby How time series databases contribute to practical machine learning projects How to handle the added complexity of geo-temporal data

For advice on analyzing time series data, check out Practical Machine Learning: A New Look at Anomaly Detection, also from Ted Dunning and Ellen Friedman.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
O'Reilly Media, Inc, USA
Country
United States
Date
28 November 2014
Pages
60
ISBN
9781491914724

Time series data is of growing importance, especially with the rapid expansion of the Internet of Things. This concise guide shows you effective ways to collect, persist, and access large-scale time series data for analysis. You’ll explore the theory behind time series databases and learn practical methods for implementing them. Authors Ted Dunning and Ellen Friedman provide a detailed examination of open source tools such as OpenTSDB and new modifications that greatly speed up data ingestion.

You’ll learn:

A variety of time series use cases The advantages of NoSQL databases for large-scale time series data NoSQL table design for high-performance time series databases The benefits and limitations of OpenTSDB How to access data in OpenTSDB using R, Go, and Ruby How time series databases contribute to practical machine learning projects How to handle the added complexity of geo-temporal data

For advice on analyzing time series data, check out Practical Machine Learning: A New Look at Anomaly Detection, also from Ted Dunning and Ellen Friedman.

Read More
Format
Paperback
Publisher
O'Reilly Media, Inc, USA
Country
United States
Date
28 November 2014
Pages
60
ISBN
9781491914724