Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This volume introduces a formal representation framework for modelling and reasoning, that allows us to quantify the uncertainty inherent in the use of vague descriptions to convey information between intelligent agents. This can then be applied across a range of applications areas in automated reasoning and learning. The utility of the framework is demonstrated by applying it to problems in data analysis where the aim is to infer effective and informative models expressed as logical rules and relations involving vague concept descriptions. The author also introduces a number of learning algorithms within the framework that can be used for both classification and prediction (regression) problems. It is shown how models of this kind can be fused with qualitative background knowledge such as that provided by domain experts. The proposed algorithms will be compared with existing learning methods on a range of benchmark databases such as those from the UCI repository.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This volume introduces a formal representation framework for modelling and reasoning, that allows us to quantify the uncertainty inherent in the use of vague descriptions to convey information between intelligent agents. This can then be applied across a range of applications areas in automated reasoning and learning. The utility of the framework is demonstrated by applying it to problems in data analysis where the aim is to infer effective and informative models expressed as logical rules and relations involving vague concept descriptions. The author also introduces a number of learning algorithms within the framework that can be used for both classification and prediction (regression) problems. It is shown how models of this kind can be fused with qualitative background knowledge such as that provided by domain experts. The proposed algorithms will be compared with existing learning methods on a range of benchmark databases such as those from the UCI repository.