Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The Mathematics of Finance has been a hot topic ever since the discovery of the Black-Scholes option pricing formulas in 1973. Unfortunately, there are very few undergraduate textbooks in this area. This book is specifically written for advanced undergraduate or beginning graduate students in mathematics, finance or economics. This book concentrates on discrete derivative pricing models, culminating in a careful and complete derivation of the Black-Scholes option pricing formulas as a limiting case of the Cox-Ross-Rubinstein discrete model.
This second edition is a complete rewrite of the first edition with significant changes to the topic organization, thus making the book flow much more smoothly. Several topics have been expanded such as the discussions of options, including the history of options, and pricing nonattainable alternatives. In this edition the material on probability has been condensed into fewer chapters, and the material on the capital asset pricing model has been removed.
The mathematics is not watered down, but it is appropriate for the intended audience. Previous knowledge of measure theory is not needed and only a small amount of linear algebra is required. All necessary probability theory is developed throughout the book on a need-to-know basis. No background in finance is required, since the book contains a chapter on options.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The Mathematics of Finance has been a hot topic ever since the discovery of the Black-Scholes option pricing formulas in 1973. Unfortunately, there are very few undergraduate textbooks in this area. This book is specifically written for advanced undergraduate or beginning graduate students in mathematics, finance or economics. This book concentrates on discrete derivative pricing models, culminating in a careful and complete derivation of the Black-Scholes option pricing formulas as a limiting case of the Cox-Ross-Rubinstein discrete model.
This second edition is a complete rewrite of the first edition with significant changes to the topic organization, thus making the book flow much more smoothly. Several topics have been expanded such as the discussions of options, including the history of options, and pricing nonattainable alternatives. In this edition the material on probability has been condensed into fewer chapters, and the material on the capital asset pricing model has been removed.
The mathematics is not watered down, but it is appropriate for the intended audience. Previous knowledge of measure theory is not needed and only a small amount of linear algebra is required. All necessary probability theory is developed throughout the book on a need-to-know basis. No background in finance is required, since the book contains a chapter on options.