Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Computers have revolutionized the analysis of sequencing data. It is unlikely that any sequencing projects have been performed in the last few years without the aid of computers. Recently their role has taken a further major step forward. Computers have become smaller and more powerful and the software has become simpler to use as it has grown in sophistication. This book reflects that change since the majority of packages described here are designed to be used on desktop computers. Computer software is now available that can run gels, collect data, and assess its accuracy. It can assemble, align, or compare multiple fragments, perform restriction analyses, identify coding regions and specific motifs, and even design the primers needed to extend the sequencing. Much of this soft ware may now be used on relatively inexpensive computers. It is now possible to progress from isolate d DNA to database submission without writing a single base down. To reflect this progression, the chapters in our Sequence Data Analysis Guidebook are arranged, not by software package, but by fimction. The early chapters deal with examining the data produced by modem automated sequenc ers, assessing its quality, and removing extraneous data. The following chap ters describe the process of aligning multiple sequences in order to assemble overlapping fragments into sequence contigs to compare similar sequences from different sources. Subsequent chapters describe procedures for compar ing the newly derived sequence to the massive amounts of information in the sequence databases.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Computers have revolutionized the analysis of sequencing data. It is unlikely that any sequencing projects have been performed in the last few years without the aid of computers. Recently their role has taken a further major step forward. Computers have become smaller and more powerful and the software has become simpler to use as it has grown in sophistication. This book reflects that change since the majority of packages described here are designed to be used on desktop computers. Computer software is now available that can run gels, collect data, and assess its accuracy. It can assemble, align, or compare multiple fragments, perform restriction analyses, identify coding regions and specific motifs, and even design the primers needed to extend the sequencing. Much of this soft ware may now be used on relatively inexpensive computers. It is now possible to progress from isolate d DNA to database submission without writing a single base down. To reflect this progression, the chapters in our Sequence Data Analysis Guidebook are arranged, not by software package, but by fimction. The early chapters deal with examining the data produced by modem automated sequenc ers, assessing its quality, and removing extraneous data. The following chap ters describe the process of aligning multiple sequences in order to assemble overlapping fragments into sequence contigs to compare similar sequences from different sources. Subsequent chapters describe procedures for compar ing the newly derived sequence to the massive amounts of information in the sequence databases.