Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The three articles of the present volume pertain to very different subjects, all ofconsiderable current interest. The first reviews the fascinating history ofthe search for nucleon substructure in the nucleus using the strength ofGamow- Teller excitations. The second deals with deep inelastic lepton scattering as a probe ofthe non-perturbative structure of the nucleon. The third describes the present state ofaffairs for muon catalyzed fusion, an application of nuclear physics which many new experiments have helped to elucidate. This volume certainly illustrates the broad range ofphysics within our field. The article on Nucleon Charge-Exchange Reactions at Intermediate Energy, by Parker Alford and Brian Spicer, reviews recent data which has clarified one of the greatest puzzles of nuclear physics during the past two decades, namely, the missing strength in Gamow-Teller (GT) transitions. The nucleon-nucleon interaction contains a GT component which has a low-lying giant resonance. The integrated GT strength is subject to a GT sum rule. Early experiments with (n,p) charge exchange reactions found only about half of the strength, required by the sum rule, in the vicinity of the giant resonance. At the time, new theoretical ideas suggested that the GT strength was especially sensitive to renormalization from effects pertaining to nucleon substructure, particularly the delta excitation of the nucleon in the nucleus.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The three articles of the present volume pertain to very different subjects, all ofconsiderable current interest. The first reviews the fascinating history ofthe search for nucleon substructure in the nucleus using the strength ofGamow- Teller excitations. The second deals with deep inelastic lepton scattering as a probe ofthe non-perturbative structure of the nucleon. The third describes the present state ofaffairs for muon catalyzed fusion, an application of nuclear physics which many new experiments have helped to elucidate. This volume certainly illustrates the broad range ofphysics within our field. The article on Nucleon Charge-Exchange Reactions at Intermediate Energy, by Parker Alford and Brian Spicer, reviews recent data which has clarified one of the greatest puzzles of nuclear physics during the past two decades, namely, the missing strength in Gamow-Teller (GT) transitions. The nucleon-nucleon interaction contains a GT component which has a low-lying giant resonance. The integrated GT strength is subject to a GT sum rule. Early experiments with (n,p) charge exchange reactions found only about half of the strength, required by the sum rule, in the vicinity of the giant resonance. At the time, new theoretical ideas suggested that the GT strength was especially sensitive to renormalization from effects pertaining to nucleon substructure, particularly the delta excitation of the nucleon in the nucleus.