Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
From the first appearance of the classic The Spectrum Analysis in 1885 to the present the field of emission spectroscopy has been evolving and changing. Over the last 20 to 30 years in particular there has been an explosion of new ideas and developments. Of late, the aura of glamour has supposedly been transferred to other techniques, but, nevertheless, it is estimated that 75% or more of the analyses done by the metal industry are accomplished by emission spectroscopy. Further, the excellent sensitivity of plasma sources has created a demand for this technique in such divergent areas as direct trace element analyses in polluted waters. Developments in the replication process and advances in the art of pro ducing ruled and holographic gratings as well as improvements in the materials from which these gratings are made have made excellent gratings available at reasonable prices. This availability and the development of plane grating mounts have contributed to the increasing popularity of grating spectrometers as com pared with the large prism spectrograph and concave grating mounts. Other areas of progress include new and improved methods for excitation, the use of controlled atmospheres and the extension of spectrometry into the vacuum region, the widespread application of the techniques for analysis of nonmetals in metals, the increasing use of polychrometers with concave or echelle gratings and improved readout systems for better reading of spectrographic plates and more efficient data handling.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
From the first appearance of the classic The Spectrum Analysis in 1885 to the present the field of emission spectroscopy has been evolving and changing. Over the last 20 to 30 years in particular there has been an explosion of new ideas and developments. Of late, the aura of glamour has supposedly been transferred to other techniques, but, nevertheless, it is estimated that 75% or more of the analyses done by the metal industry are accomplished by emission spectroscopy. Further, the excellent sensitivity of plasma sources has created a demand for this technique in such divergent areas as direct trace element analyses in polluted waters. Developments in the replication process and advances in the art of pro ducing ruled and holographic gratings as well as improvements in the materials from which these gratings are made have made excellent gratings available at reasonable prices. This availability and the development of plane grating mounts have contributed to the increasing popularity of grating spectrometers as com pared with the large prism spectrograph and concave grating mounts. Other areas of progress include new and improved methods for excitation, the use of controlled atmospheres and the extension of spectrometry into the vacuum region, the widespread application of the techniques for analysis of nonmetals in metals, the increasing use of polychrometers with concave or echelle gratings and improved readout systems for better reading of spectrographic plates and more efficient data handling.