Bayesian Statistics for the Social Sciences
David Kaplan,William R. Shadish, Jr.,Feifei Ye,Jay Myung,Jack McArdle
Bayesian Statistics for the Social Sciences
David Kaplan,William R. Shadish, Jr.,Feifei Ye,Jay Myung,Jack McArdle
Bridging the gap between traditional classical statistics and a Bayesian approach, David Kaplan provides readers with the concepts and practical skills they need to apply Bayesian methodologies to their data analysis problems. Part I addresses the elements of Bayesian inference, including exchangeability, likelihood, prior/posterior distributions, and the Bayesian central limit theorem. Part II covers Bayesian hypothesis testing, model building, and linear regression analysis, carefully explaining the differences between the Bayesian and frequentist approaches. Part III extends Bayesian statistics to multilevel modeling and modeling for continuous and categorical latent variables. Kaplan closes with a discussion of philosophical issues and argues for an evidence-based framework for the practice of Bayesian statistics.
User-Friendly Features
*Includes worked-through, substantive examples, using large-scale educational and social science databases, such as PISA (Program for International Student Assessment) and the LSAY (Longitudinal Study of American Youth).
*Utilizes open-source R software programs available on CRAN (such as MCMCpack and rjags); readers do not have to master the R language and can easily adapt the example programs to fit individual needs.
*Shows readers how to carefully warrant priors on the basis of empirical data.
*Companion website features data and code for the book’s examples, plus other resources.
This item is not currently in-stock. It can be ordered online and is expected to ship in 10-14 days
Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.
Sign in or become a Readings Member to add this title to a wishlist.