Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The importance of materials science for the progress of electronic techno logy has been apparent to all since the invention of the transistor in 1948, though that epoch-making event was the result of far-sighted research planning by Bell Laboratories dating from a decade or more before: no mere chance discovery, therefore, but the fruition of work which allotted at its inception a vital role to materials. The transistor is now very old hat, but new materials developments are continually triggering fresh develop ments in electronics, from optical communications to high-temperature superconductors. Electronic engineers are now given at least two courses in materials as part of their degree programme. This book arose from a series of forty lectures the author gave to the third year students on the Extended Honours Degree Course in Electronic and Electrical Engineering at Loughborough University, though additional elementary material has been included to make the book suitable for first year students. The biggest problem in such a course is deciding what must be left out, and this I am afraid I shirked by leaving out all those areas which I was not familiar with from my days in the Ministry of Aviation, the semiconductor device industry and as a graduate student and research worker. I hope that what remains is sufficiently catholic.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The importance of materials science for the progress of electronic techno logy has been apparent to all since the invention of the transistor in 1948, though that epoch-making event was the result of far-sighted research planning by Bell Laboratories dating from a decade or more before: no mere chance discovery, therefore, but the fruition of work which allotted at its inception a vital role to materials. The transistor is now very old hat, but new materials developments are continually triggering fresh develop ments in electronics, from optical communications to high-temperature superconductors. Electronic engineers are now given at least two courses in materials as part of their degree programme. This book arose from a series of forty lectures the author gave to the third year students on the Extended Honours Degree Course in Electronic and Electrical Engineering at Loughborough University, though additional elementary material has been included to make the book suitable for first year students. The biggest problem in such a course is deciding what must be left out, and this I am afraid I shirked by leaving out all those areas which I was not familiar with from my days in the Ministry of Aviation, the semiconductor device industry and as a graduate student and research worker. I hope that what remains is sufficiently catholic.