Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Because the theory of equations with delay terms occurs in a variety of contexts, it is important to provide a framework, whenever possible, to handle as many cases as possible simultaneously so as to bring out a better insight and understanding of the subtle differences of the various equations with delays. Furthermore, such a unified theory would avoid duplication and expose open questions that are significant for future research.
It is in this spirit that the authors view the importance of their monograph, which presents a systematic and unified theory of recent developments of equations with unbounded delay, describes the current state of the theory showing the essential unity achieved, and provides a general structure applicable to a variety of problems.
It is the first book that:
(i) presents a unified framework to investigate the basic existence theory for a variety of equations with delay;
(ii) treats the classification of equations with memory precisely so as to bring out the subtle differences between them;
(iii) develops a systematic study of stability theory in terms of two different measures which includes several known concepts; and
(iv) exhibits the advantages of employing Lyapunov functions on product spaces as well as the method of perturbing Lyapunov functions.
This book will be of value to researchers and advanced graduate students in mathematics, electrical engineering and biomathematics.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Because the theory of equations with delay terms occurs in a variety of contexts, it is important to provide a framework, whenever possible, to handle as many cases as possible simultaneously so as to bring out a better insight and understanding of the subtle differences of the various equations with delays. Furthermore, such a unified theory would avoid duplication and expose open questions that are significant for future research.
It is in this spirit that the authors view the importance of their monograph, which presents a systematic and unified theory of recent developments of equations with unbounded delay, describes the current state of the theory showing the essential unity achieved, and provides a general structure applicable to a variety of problems.
It is the first book that:
(i) presents a unified framework to investigate the basic existence theory for a variety of equations with delay;
(ii) treats the classification of equations with memory precisely so as to bring out the subtle differences between them;
(iii) develops a systematic study of stability theory in terms of two different measures which includes several known concepts; and
(iv) exhibits the advantages of employing Lyapunov functions on product spaces as well as the method of perturbing Lyapunov functions.
This book will be of value to researchers and advanced graduate students in mathematics, electrical engineering and biomathematics.