Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Characterization Problems Associated with the Exponential Distribution
Paperback

Characterization Problems Associated with the Exponential Distribution

$138.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Problems of calculating the reliability of instruments and systems and the development of measures to increase efficiency and reduce operational costs confronted physicists and mathe maticians at the end of the ‘40’s and the beginning of the '50’s in connection with the unrelia bility of electro-vacuum instruments used in aviation. Since then steadily increasing demands for the accuracy, reliability and complexity required in electronic equipment have served as a stimulus in the development of the theory of reliability. From 1950 to 1955 Epstein and Sobel [67,68] and Davis [62], in an analysis of statistical data of the operating time of an instrument up to failure, showed that the distribution is exponential in many cases. Consequently, the ex ponential distribution became basic to research associated with experiments on life expectancy. Further research has shown that there are a whole series of problems in reliability theory for which the exponential distribution is inapplicable. However, it can practically always be used as a first approximation. The ease of computational work due to the nice properties of the exponential distribution (for example, the lack of memory property, see Section 1) is also a reason for its frequent use. AB a rule, data on the behavior of the failure rate function are used to test the hypothesis that a given distribution belongs to the class of exponential distributions, and order statistics are used to estimate the parameter of the exponential distribution.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
1 October 2011
Pages
137
ISBN
9781461293743

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Problems of calculating the reliability of instruments and systems and the development of measures to increase efficiency and reduce operational costs confronted physicists and mathe maticians at the end of the ‘40’s and the beginning of the '50’s in connection with the unrelia bility of electro-vacuum instruments used in aviation. Since then steadily increasing demands for the accuracy, reliability and complexity required in electronic equipment have served as a stimulus in the development of the theory of reliability. From 1950 to 1955 Epstein and Sobel [67,68] and Davis [62], in an analysis of statistical data of the operating time of an instrument up to failure, showed that the distribution is exponential in many cases. Consequently, the ex ponential distribution became basic to research associated with experiments on life expectancy. Further research has shown that there are a whole series of problems in reliability theory for which the exponential distribution is inapplicable. However, it can practically always be used as a first approximation. The ease of computational work due to the nice properties of the exponential distribution (for example, the lack of memory property, see Section 1) is also a reason for its frequent use. AB a rule, data on the behavior of the failure rate function are used to test the hypothesis that a given distribution belongs to the class of exponential distributions, and order statistics are used to estimate the parameter of the exponential distribution.

Read More
Format
Paperback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
1 October 2011
Pages
137
ISBN
9781461293743