Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Incremental Version-Space Merging: A General Framework for Concept Learning
Paperback

Incremental Version-Space Merging: A General Framework for Concept Learning

$276.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

One of the most enjoyable experiences in science is hearing a simple but novel idea which instantly rings true, and whose consequences then begin to unfold in unforeseen directions. For me, this book presents such an idea and several of its ramifications. This book is concerned with machine learning. It focuses on a ques tion that is central to understanding how computers might learn: how can a computer acquire the definition of some general concept by abstracting from specific training instances of the concept? Although this question of how to automatically generalize from examples has been considered by many researchers over several decades, it remains only partly answered. The approach developed in this book, based on Haym Hirsh’s Ph.D. dis sertation, leads to an algorithm which efficiently and exhaustively searches a space of hypotheses (possible generalizations of the data) to find all maxi mally consistent hypotheses, even in the presence of certain types of incon sistencies in the data. More generally, it provides a framework for integrat ing different types of constraints (e.g., training examples, prior knowledge) which allow the learner to reduce the set of hypotheses under consideration.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
26 September 2011
Pages
116
ISBN
9781461288343

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

One of the most enjoyable experiences in science is hearing a simple but novel idea which instantly rings true, and whose consequences then begin to unfold in unforeseen directions. For me, this book presents such an idea and several of its ramifications. This book is concerned with machine learning. It focuses on a ques tion that is central to understanding how computers might learn: how can a computer acquire the definition of some general concept by abstracting from specific training instances of the concept? Although this question of how to automatically generalize from examples has been considered by many researchers over several decades, it remains only partly answered. The approach developed in this book, based on Haym Hirsh’s Ph.D. dis sertation, leads to an algorithm which efficiently and exhaustively searches a space of hypotheses (possible generalizations of the data) to find all maxi mally consistent hypotheses, even in the presence of certain types of incon sistencies in the data. More generally, it provides a framework for integrat ing different types of constraints (e.g., training examples, prior knowledge) which allow the learner to reduce the set of hypotheses under consideration.

Read More
Format
Paperback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
26 September 2011
Pages
116
ISBN
9781461288343