Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This IMA Volume in Mathematics and its Applications QUASICLASSICAL METHODS is based on the proceedings of a very successful one-week workshop with the same title, which was an integral part of the 1994-1995 IMA program on Waves and Scattering. We would like to thank Jeffrey Rauch and Barry Simon for their excellent work as organizers of the meeting. We also take this opportunity to thank the National Science Foun dation (NSF), the Army Research Office (ARO) and the Office of Naval Research (ONR), whose financial support made the workshop possible. A vner Friedman Robert Gulliver v PREFACE There are a large number of problems where qualitative features of a partial differential equation in an appropriate regime are determined by the behavior of an associated ordinary differential equation. The example which gives the area its name is the limit of quantum mechanical Hamil tonians (Schrodinger operators) as Planck’s constant h goes to zero, which is determined by the corresponding classical mechanical system. A sec ond example is linear wave equations with highly oscillatory initial data. The solutions are described by geometric optics whose centerpiece are rays which are solutions of ordinary differential equations analogous to the clas sical mechanics equations in the example above. Much recent work has concerned with understanding terms beyond the leading term determined by the quasi classical limit. Two examples of this involve Weyl asymptotics and the large-Z limit of atomic Hamiltonians, both areas of current research.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This IMA Volume in Mathematics and its Applications QUASICLASSICAL METHODS is based on the proceedings of a very successful one-week workshop with the same title, which was an integral part of the 1994-1995 IMA program on Waves and Scattering. We would like to thank Jeffrey Rauch and Barry Simon for their excellent work as organizers of the meeting. We also take this opportunity to thank the National Science Foun dation (NSF), the Army Research Office (ARO) and the Office of Naval Research (ONR), whose financial support made the workshop possible. A vner Friedman Robert Gulliver v PREFACE There are a large number of problems where qualitative features of a partial differential equation in an appropriate regime are determined by the behavior of an associated ordinary differential equation. The example which gives the area its name is the limit of quantum mechanical Hamil tonians (Schrodinger operators) as Planck’s constant h goes to zero, which is determined by the corresponding classical mechanical system. A sec ond example is linear wave equations with highly oscillatory initial data. The solutions are described by geometric optics whose centerpiece are rays which are solutions of ordinary differential equations analogous to the clas sical mechanics equations in the example above. Much recent work has concerned with understanding terms beyond the leading term determined by the quasi classical limit. Two examples of this involve Weyl asymptotics and the large-Z limit of atomic Hamiltonians, both areas of current research.