Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The present volume has its source in the CAP-CRM summer school on Particles and Fields that was held in Banff in the summer of 1994. Over the years, the Division of Theoretical Physics of the Canadian Associa- tion of Physicists (CAP) has regularly sponsored such schools on various theoretical and experimental topics. In 1994, the Centre de Recherches Mathematiques (CRM) lent its support to the event. This institute, located in Montreal, is one of Canada’s national research centers in the mathe- matical sciences. Its mandate includes the organization of scientific events across Canada and since 1994 the CRM has been holding a yearly summer school in Banff as part of its thematic program. The summer school, whose lectures are collected here, has thus become a tradition. The focus of the school was integrable theories, matrix models, statistical systems, field theory and its applications to condensed matter physics, as well as certain aspects of algebra, geometry, and topology. This covers some of the most significant advances in modern theoretical physics. The present volume updates and expands these lectures and reflects the high pedagogical level of the school. The first chapter by E. Corrigan describes some of the remarkable fea- tures of the integrable Toda field theories which are associated with affine Dynkin diagrams. The second chapter by J. Feldman, H. Knorrer, D. Leh- mann, and E.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The present volume has its source in the CAP-CRM summer school on Particles and Fields that was held in Banff in the summer of 1994. Over the years, the Division of Theoretical Physics of the Canadian Associa- tion of Physicists (CAP) has regularly sponsored such schools on various theoretical and experimental topics. In 1994, the Centre de Recherches Mathematiques (CRM) lent its support to the event. This institute, located in Montreal, is one of Canada’s national research centers in the mathe- matical sciences. Its mandate includes the organization of scientific events across Canada and since 1994 the CRM has been holding a yearly summer school in Banff as part of its thematic program. The summer school, whose lectures are collected here, has thus become a tradition. The focus of the school was integrable theories, matrix models, statistical systems, field theory and its applications to condensed matter physics, as well as certain aspects of algebra, geometry, and topology. This covers some of the most significant advances in modern theoretical physics. The present volume updates and expands these lectures and reflects the high pedagogical level of the school. The first chapter by E. Corrigan describes some of the remarkable fea- tures of the integrable Toda field theories which are associated with affine Dynkin diagrams. The second chapter by J. Feldman, H. Knorrer, D. Leh- mann, and E.