Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Itisonlyrecently thatthe naturaloccurrenceoffree radicalsin biological tissue has become widely accepted, and that the suspi- cion with which biologists previously viewed the free radicals of radiationchemistryhas beenplacedin a broaderperspective. Now, oxygen-derived free radicals are considered respectable biochemi- cal intermediates, given always the caveat that unwanted tissue damage may arise if these active species are produced in such abundance that they overwhelm the natural antioxidant and free- radical defense mechanisms, or if these systems have become hypoeffective. Many factors, including several dietary manipula- tions, can lead toelevatedproductionofsuperoxide and may result in free radical overload, whereas a deficiency of those micronutri- ents associated with the antioxidant defense mec.hanisms may re- sult in substantially diminished antioxidant capacity. By now, antioxidants have become a household word and al- most everyone is aware of their imponance in protecting the body against attack by active oxygen species. Indeed, it is a paradox of nature that oxygen, which is so essential to sustain aerobic life, ul- timately contributes to its destruction. Not surprisingly, recogni- tion ofthis dilemma has generated a spate ofantioxidant strategies intended to reduce the risk of tissue damage by rampant oxygen radicals, some sadly based less on science than on speculation.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Itisonlyrecently thatthe naturaloccurrenceoffree radicalsin biological tissue has become widely accepted, and that the suspi- cion with which biologists previously viewed the free radicals of radiationchemistryhas beenplacedin a broaderperspective. Now, oxygen-derived free radicals are considered respectable biochemi- cal intermediates, given always the caveat that unwanted tissue damage may arise if these active species are produced in such abundance that they overwhelm the natural antioxidant and free- radical defense mechanisms, or if these systems have become hypoeffective. Many factors, including several dietary manipula- tions, can lead toelevatedproductionofsuperoxide and may result in free radical overload, whereas a deficiency of those micronutri- ents associated with the antioxidant defense mec.hanisms may re- sult in substantially diminished antioxidant capacity. By now, antioxidants have become a household word and al- most everyone is aware of their imponance in protecting the body against attack by active oxygen species. Indeed, it is a paradox of nature that oxygen, which is so essential to sustain aerobic life, ul- timately contributes to its destruction. Not surprisingly, recogni- tion ofthis dilemma has generated a spate ofantioxidant strategies intended to reduce the risk of tissue damage by rampant oxygen radicals, some sadly based less on science than on speculation.