Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Naviet-Stokes equations represent the extremum conditions of a certain functional. We describe the method of seeking solution for these equations, which consists in moving along the gradient to this functional extremum. We formulate the conditions of reaching this extremum, which are at the same time necessary and sufficient conditions of this functional global extremum existence.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Naviet-Stokes equations represent the extremum conditions of a certain functional. We describe the method of seeking solution for these equations, which consists in moving along the gradient to this functional extremum. We formulate the conditions of reaching this extremum, which are at the same time necessary and sufficient conditions of this functional global extremum existence.