Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book will introduce design methodologies, known as Built-in-Self-Test (BiST) and Built-in-Self-Calibration (BiSC), which enhance the robustness of radio frequency (RF) and millimeter wave (mmWave) integrated circuits (ICs). These circuits are used in current and emerging communication, computing, multimedia and biomedical products and microchips. The design methodologies presented will result in enhancing the yield (percentage of working chips in a high volume run) of RF and mmWave ICs which will enable successful manufacturing of such microchips in high volume.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book will introduce design methodologies, known as Built-in-Self-Test (BiST) and Built-in-Self-Calibration (BiSC), which enhance the robustness of radio frequency (RF) and millimeter wave (mmWave) integrated circuits (ICs). These circuits are used in current and emerging communication, computing, multimedia and biomedical products and microchips. The design methodologies presented will result in enhancing the yield (percentage of working chips in a high volume run) of RF and mmWave ICs which will enable successful manufacturing of such microchips in high volume.