Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Multiple Time Series Models
Paperback

Multiple Time Series Models

$120.99
Sign in or become a Readings Member to add this title to your wishlist.

Many analyses of time series data involve multiple, related variables.
Modeling Multiple Time Series presents many specification choices and special challenges. This book reviews the main competing approaches to modeling multiple time series: simultaneous equations, ARIMA, error correction models, and vector autoregression. The text focuses on vector autoregression (VAR) models as a generalization of the other approaches mentioned. Specification, estimation, and inference using these models is discussed. The authors also review arguments for and against using multi-equation time series models. Two complete, worked examples show how VAR models can be employed. An appendix discusses software that can be used for multiple time series models and software code for replicating the examples is available. Key Features: Offers a detailed comparison of different time series methods and approaches. Includes a self-contained introduction to vector autoregression modeling. Situates multiple time series modeling as a natural extension of commonly taught statistical models.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
SAGE Publications Inc
Country
United States
Date
21 September 2006
Pages
120
ISBN
9781412906562

Many analyses of time series data involve multiple, related variables.
Modeling Multiple Time Series presents many specification choices and special challenges. This book reviews the main competing approaches to modeling multiple time series: simultaneous equations, ARIMA, error correction models, and vector autoregression. The text focuses on vector autoregression (VAR) models as a generalization of the other approaches mentioned. Specification, estimation, and inference using these models is discussed. The authors also review arguments for and against using multi-equation time series models. Two complete, worked examples show how VAR models can be employed. An appendix discusses software that can be used for multiple time series models and software code for replicating the examples is available. Key Features: Offers a detailed comparison of different time series methods and approaches. Includes a self-contained introduction to vector autoregression modeling. Situates multiple time series modeling as a natural extension of commonly taught statistical models.

Read More
Format
Paperback
Publisher
SAGE Publications Inc
Country
United States
Date
21 September 2006
Pages
120
ISBN
9781412906562